我正在使用Spark 2.1。我有一个具有以下架构的数据框:
scala> df.printSchema
|-- id: integer (nullable = true)
|-- sum: integer (nullable = true)
|-- distribution: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- lower: integer (nullable = true)
| | |-- upper: integer (nullable = true)
| | |-- count: integer (nullable = true)
我要汇总:
在这里,我无法爆炸数据框,因为我将重复行,并且无法进行“和”列的总和。一种可能性是分别进行分布的求和和聚合,然后通过“ id”进行连接,但是用户定义的函数将更简单。
作为输入,我有:
scala> df.show(false)
+---+---+------------------------------------------------------------+
|id |sum|distribution |
+---+---+------------------------------------------------------------+
|1 |1 |[[0,1,2]] |
|1 |1 |[[1,2,5]] |
|1 |7 |[[0,1,1], [1,2,6]] |
|1 |7 |[[0,1,5], [1,2,1], [2,3,1]] |
|2 |1 |[[0,1,1]] |
|2 |2 |[[0,1,1], [1,2,1]] |
|2 |1 |[[0,1,1]] |
|2 |1 |[[2,3,1]] |
|2 |1 |[[0,1,1]] |
|2 |4 |[[0,1,1], [1,2,1], [2,3,1], [3,4,1]] |
+---+---+------------------------------------------------------------+
预期输出:
+---+---+------------------------------------------------------------+
|id |sum|distribution |
+---+---+------------------------------------------------------------+
|1 |16 |[[0,1,8], [1,2,12], [2,3,1]] |
|2 |10 |[[0,1,5], [1,2,2], [2,3,3], [3,4,1]] |
+---+---+------------------------------------------------------------+
答案 0 :(得分:0)
您可以使用以下UDF:
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{ArrayType, IntegerType, StructField, StructType}
# schema to be used in the UDF to have this format in output this format as output of your
val schema: ArrayType = ArrayType(StructType(Seq(
StructField("lower", IntegerType, false),
StructField("upper", IntegerType, false),
StructField("count", IntegerType, false)
)))
val customAggregation = udf((xs: Seq[Seq[Row]]) =>
xs.flatten.map(row => (
row.getAs[Int]("lower"),
row.getAs[Int]("upper"),
row.getAs[Int]("count")
))
.groupBy(x => (x._1, x._2))
.mapValues(_.map(_._3).sum).toSeq
.map(x => (x._1._1, x._1._2, x._2)), schema
)
val df: DataFrame = df_input
.groupBy("id")
.agg(sum("sum"),collect_list("distribution"))
.toDF("id", "sum" ,"distribution")
.withColumn("distribution_agg", flatten(col("distribution")))
结果将是
scala> dfOutput.select("id","sum","distribution_agg").show
+---+---+------------------------------------------------------------+
|id |sum|distribution |
+---+---+------------------------------------------------------------+
|1 |16 |[[0,1,8], [1,2,12], [2,3,1]] |
|2 |10 |[[0,1,5], [1,2,2], [2,3,3], [3,4,1]] |
+---+---+------------------------------------------------------------+