3D卷积自动编码器的输出层和输入层不匹配

时间:2019-08-31 03:24:59

标签: python tensorflow keras conv-neural-network

我正在尝试创建3维卷积神经网络自动编码器。我无法将张量的输入尺寸与输出匹配

我尝试过更改图层形状并使用Keras自动编码器。

        padding = 'SAME'
        stride = [1,1,1]

        self.inputs_ = tf.placeholder(tf.float32, input_shape, name='inputs')
        self.targets_ = tf.placeholder(tf.float32, input_shape, name='targets')

        conv1 = tf.layers.conv3d(inputs= self.inputs_, filters=16, kernel_size=(3,3,3), padding= padding, strides = stride, activation=tf.nn.relu)  
        maxpool1 = tf.layers.max_pooling3d(conv1, pool_size=(2,2,2), strides=(2,2,2), padding= padding)
        conv2 = tf.layers.conv3d(inputs=maxpool1, filters=32, kernel_size=(3,3,3), padding= padding, strides = stride, activation=tf.nn.relu)
        maxpool2 = tf.layers.max_pooling3d(conv2, pool_size=(3,3,3), strides=(3,3,3), padding= padding)
        conv3 = tf.layers.conv3d(inputs=maxpool2, filters=96, kernel_size=(2,2,2), padding= padding , strides = stride, activation=tf.nn.relu)
        maxpool3 = tf.layers.max_pooling3d(conv3, pool_size=(2,2,2), strides=(2,2,2), padding= padding)
        #latent internal representation

        #decoder
#         tf.keras.layers.UpSampling3D()
        unpool1 =K.resize_volumes(maxpool3,2,2,2,"channels_last")
        deconv1 = tf.layers.conv3d_transpose(inputs=unpool1, filters=96, kernel_size=(2,2,2), padding= padding , strides = stride, activation=tf.nn.relu)
        unpool2 = K.resize_volumes(deconv1,3,3,3,"channels_last")
        deconv2 = tf.layers.conv3d_transpose(inputs=unpool2, filters=32, kernel_size=(3,3,3), padding= padding , strides = stride, activation=tf.nn.relu)
        unpool3 = K.resize_volumes(deconv2,2,2,2,"channels_last")
        deconv3 = tf.layers.conv3d_transpose(inputs=unpool3, filters=16, kernel_size=(3,3,3), padding= padding , strides = stride, activation=tf.nn.relu)
        self.output = tf.layers.dense(inputs=deconv3, units=3)
        self.output = tf.reshape(self.output, self.input_shape)

ValueError:无法重塑具有1850688个元素的张量以为输入形状为[[1,36,84,204,3]的'Reshape'(op:'Reshape')塑造[1,31,73,201,3](1364589个元素) ],[5],并将输入张量计算为局部形状:input [1] = [1,31,73,201,3]。

1 个答案:

答案 0 :(得分:0)

您的输入形状为[1, 31, 73, 201, 3]。在转置卷积过程中,将在三个[2,2,2]层中对[3,3,3][2,2,2]resize_volumes进行升频。如果将这些数字乘以整个轴,则将为[12, 12, 12](每个2 * 3 * 2)。因此,解码器的输出在每个维度上都是12的倍数。

但是您输入的尺寸[x, 31, 73, 201, x]不是12的倍数。大于这些尺寸的最接近的倍数是[x, 36, 84, 204, x]。因此,解决方案将是在解码部分之后,您将去除多余的尺寸并将其与原始尺寸匹配,或者更好的解决方案是在原始形状上填充零并使其为12的倍数。第二种解决方案,您将不得不考虑输入的新维度。

更新的代码(仅更改的部分)

self.inputs_ = tf.placeholder(tf.float32, input_shape, name='inputs')
pad_inputs = tf.pad(self.inputs_, [[0,0], [2, 3], [5, 6], [1, 2], [0, 0]]) # Pad at the edges
print(pad_inputs.shape)  # [1, 36, 84, 204, 3]

conv1 = tf.layers.conv3d(inputs= pad_inputs, filters=16, kernel_size=(3,3,3), padding= padding, strides = stride, activation=tf.nn.relu)

最后,

self.output = tf.reshape(self.output, pad_inputs.shape)