尝试使用A a = new A();//creating object inside method
public class A {
private static final C c= BeanUtil.getBean(C.class);// giving exception at this line
}
@Service
public class C{
}
进行单标签分类
这是我简化的Keras模型:
num_classes = 73
这是我的num_classes = 73
batch_size = 4
train_data_list = [training_file_names list here..]
validation_data_list = [ validation_file_names list here..]
training_generator = DataGenerator(train_data_list, batch_size, num_classes)
validation_generator = DataGenerator(validation_data_list, batch_size, num_classes)
model = Sequential()
model.add(Conv1D(32, 3, strides=1, input_shape=(15,120), activation="relu"))
model.add(Conv1D(16, 3, strides=1, activation="relu"))
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="categorical_crossentropy",optimizer=sgd,metrics=['accuracy'])
model.fit_generator(generator=training_generator, epochs=100,
validation_data=validation_generator)
的{{1}}方法:
DataGenerator
由于我的__get_item__
值正确返回了维度def __get_item__(self):
X = np.zeros((self.batch_size,15,120))
y = np.zeros((self.batch_size, 1 ,self.n_classes))
for i in range(self.batch_size):
X_row = some_method_that_gives_X_of_15x20_dim()
target = some_method_that_gives_target()
one_hot = keras.utils.to_categorical(target, num_classes=self.n_classes)
X[i] = X_row
y[i] = one_hot
return X, y
,因此此处未显示。我的问题是返回的y值。
X
具有(batch_size, 15, 120)
的形状,作为73个类的一个热编码标签,我认为这是返回的正确形状。
但是Keras对于最后一层给出了以下错误:
ValueError:检查目标时出错:预期density_1具有2 尺寸,但数组的形状为(4,1,73)
由于批次大小为4,我认为目标批次也应为3维(4,1,73)。为什么Keras期望最后一层是2维?
答案 0 :(得分:2)
您模型的摘要显示,在输出层中应该只有2个维度,(无,73)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_7 (Conv1D) (None, 13, 32) 11552
_________________________________________________________________
conv1d_8 (Conv1D) (None, 11, 16) 1552
_________________________________________________________________
flatten_5 (Flatten) (None, 176) 0
_________________________________________________________________
dense_4 (Dense) (None, 73) 12921
=================================================================
Total params: 26,025
Trainable params: 26,025
Non-trainable params: 0
_________________________________________________________________
由于目标的尺寸为(batch_size,1,73),因此只需更改为(batch_size,73),即可运行模型