我正在尝试将大小为[2, 2]
的2D数组插入大小为[2, 3, 2]
的3D数组中。对于3D阵列的每个页面(轴= 0),插入2D阵列的位置(读取:行号)可能会有所不同。我尝试使用np.insert
函数。但是,我正在努力……
import numpy as np
arr = np.arange(12).reshape(2, 3, 2)
arr
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]])
row_number_before_insertion = [1, 2]
val_to_insert = (np.ones(4) * 100).reshape(2,2)
arr_expanded = np.insert(arr, row_number_before_insertion , val_to_insert, axis=1)
arr_expanded
array([[[ 0, 1],
[100, 100],
[ 2, 3],
[100, 100],
[ 4, 5]],
[[ 6, 7],
[100, 100],
[ 8, 9],
[100, 100],
[ 10, 11]]])
我实际上正在寻找以下结果:
arr_expanded
array([[[ 0, 1],
[100, 100],
[100, 100],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[100, 100],
[100, 100],
[ 10, 11]]])
答案 0 :(得分:1)
这是一个基于数组分配和masking
-
from skimage.util.shape import view_as_windows
def insert_into_arr(arr, row_number_before_insertion, val_to_insert):
ma,na,ra = arr.shape
L = len(val_to_insert)
N = len(row_number_before_insertion)
out = np.zeros((ma,na+L,ra),dtype=arr.dtype)
mask = np.ones(out.shape, dtype=bool)
w = view_as_windows(out,(1,L,1))[...,0,:,0]
w[np.arange(N), row_number_before_insertion] = val_to_insert.T
wm = view_as_windows(mask,(1,L,1))[...,0,:,0]
wm[np.arange(N), row_number_before_insertion] = 0
out[mask] = arr.ravel()
return out
样品运行-
In [44]: arr
Out[44]:
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]])
In [45]: row_number_before_insertion
Out[45]: array([1, 2])
In [46]: val_to_insert
Out[46]:
array([[784, 659],
[729, 292],
[935, 863]])
In [47]: insert_into_arr(arr, row_number_before_insertion, val_to_insert)
Out[47]:
array([[[ 0, 1],
[784, 659],
[729, 292],
[935, 863],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[784, 659],
[729, 292],
[935, 863],
[ 10, 11]]])
另一个有repeat
和masking
的人-
def insert_into_arr_v2(arr, row_number_before_insertion, val_to_insert):
ma,na,ra = arr.shape
r = row_number_before_insertion
L = len(val_to_insert)
M = na+L
out = np.zeros((ma,na+L,ra),dtype=arr.dtype)
idx = ((r + M*np.arange(len(r)))[:,None] + np.arange(L)).ravel()
out.reshape(-1,ra)[idx] =np.repeat(val_to_insert[None],ma,axis=0).reshape(-1,ra)
mask = np.isin(np.arange(ma*(na+L)),idx, invert=True)
out.reshape(-1,ra)[mask] = arr.reshape(-1,ra)
return out
答案 1 :(得分:0)
这是使用{
"productId":5
},
{
"productId":7
},
{
"productId":1
},
{
"productId":4
},
{
"productId":6
},
{
"productId":2
}
的解决方案:
vstack