我正在尝试使用自己的数据集根据https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/5%20-%20Multi-class%20Sentiment%20Analysis.ipynb对文本进行分类。我的数据集是句子的csv和与之相关的类。有6种不同的类别:
sent class
'the fox is brown' animal
'the house is big' object
'one water is drinkable' water
...
运行时:
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
print(start_time)
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
#print(train_loss.type())
#print(train_acc.type())
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut5-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
,我获得了以下错误
1566460706.977012
epoch_loss
<torchtext.data.iterator.BucketIterator object at 0x000001FABE907E80>
TypeError: '<' not supported between instances of 'Example' and 'Example'
指向:
TypeError Traceback (most recent call last)
<ipython-input-22-19e8a7eb204e> in <module>()
10 #print(train_loss.type())
11 #print(train_acc.type())
---> 12 valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
13
14 end_time = time.time()
<ipython-input-21-83b02f99bca7> in evaluate(model, iterator, criterion)
9 print('epoch_loss')
10 print(iterator)
---> 11 for batch in iterator:
12 print('batch')
13 predictions = model(batch.text)
我是pytorch的新手,所以只添加了一行以识别迭代器数据类型并得到:
<torchtext.data.iterator.BucketIterator object at 0x000001FABE907E80>
我试图根据https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py确定具体属性,但无济于事。
任何建议都值得赞赏。
评价(迭代器所在的)方法的代码为:
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
print('epoch_loss')
print(iterator)
for batch in iterator:
print('batch')
predictions = model(batch.text)
loss = criterion(predictions, batch.label)
acc = categorical_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)