使用Pandas如何使用列数据进行大数据的统计分析

时间:2019-08-21 06:15:34

标签: python pandas

在我的数据集中,我有48000个村庄,每个村庄有10到12种庄稼,每个村庄的每种庄稼播种的作物面积,我想找出哪个庄稼在哪个村庄的主要面积,然后找出在所有村庄中,从农作物1到农作物n的百分比是多少。即我想找出村庄明智的作物比例,如果村庄A具有作物1和作物2,那么对于作物1和作物2 A的百分比是

因此,接下来我可以对特定农作物的村庄进行排名。因此,我可以了解哪些农作物播种面积大的作物。

  District   Taluka            Village Name       Crop        Area in hec
0   Ahmednagar  Pathardi          Alhanwadi   Bajara        370.0
1   Ahmednagar  Pathardi             Adgaon   Bajara        302.0
2   Ahmednagar  Pathardi       Ambika Nagar   Bajara         40.0
3   Ahmednagar  Pathardi         Bharajwadi   Bajara         90.0
4   Ahmednagar  Pathardi           Bhalgaon   Bajara        254.0
5   Ahmednagar  Pathardi  Bhawarwadi (N.V.)   Bajara         35.0
6   Ahmednagar  Pathardi           Badewadi   Bajara         17.0
7   Ahmednagar  Pathardi              Akola   Bajara        175.0
8   Ahmednagar  Pathardi          Auranjpur   Bajara         35.0
9   Ahmednagar  Pathardi          Agaskhand   Bajara        100.0
10  Ahmednagar  Pathardi          Alhanwadi   Cotton        150.0
11  Ahmednagar  Pathardi             Adgaon   Cotton        310.0
12  Ahmednagar  Pathardi       Ambika Nagar   Cotton        131.0
13  Ahmednagar  Pathardi         Bharajwadi   Cotton        161.0
14  Ahmednagar  Pathardi           Bhalgaon   Cotton        562.0
15  Ahmednagar  Pathardi  Bhawarwadi (N.V.)   Cotton        211.0
16  Ahmednagar  Pathardi           Badewadi   Cotton        104.0
17  Ahmednagar  Pathardi              Akola   Cotton        550.0
18  Ahmednagar  Pathardi          Auranjpur   Cotton          0.0
19  Ahmednagar  Pathardi          Agaskhand   Cotton          0.0
20  Ahmednagar  Pathardi          Alhanwadi  Soybean         26.0
21  Ahmednagar  Pathardi             Adgaon  Soybean         52.0
22  Ahmednagar  Pathardi       Ambika Nagar  Soybean         72.0
23  Ahmednagar  Pathardi         Bharajwadi  Soybean         88.0
24  Ahmednagar  Pathardi           Bhalgaon  Soybean         90.0
25  Ahmednagar  Pathardi  Bhawarwadi (N.V.)  Soybean         93.0
26  Ahmednagar  Pathardi           Badewadi  Soybean        100.0
27  Ahmednagar  Pathardi              Akola  Soybean         10.0
28  Ahmednagar  Pathardi          Auranjpur  Soybean         45.0
29  Ahmednagar  Pathardi          Agaskhand  Soybean         20.0
30  Ahmednagar  Pathardi          Alhanwadi    Maize         10.0
31  Ahmednagar  Pathardi             Adgaon    Maize          1.5
32  Ahmednagar  Pathardi       Ambika Nagar    Maize          3.0
33  Ahmednagar  Pathardi         Bharajwadi    Maize          5.0
34  Ahmednagar  Pathardi           Bhalgaon    Maize         12.0
35  Ahmednagar  Pathardi  Bhawarwadi (N.V.)    Maize         51.0
36  Ahmednagar  Pathardi           Badewadi    Maize          5.0
37  Ahmednagar  Pathardi              Akola    Maize         25.0
38  Ahmednagar  Pathardi          Auranjpur    Maize          5.0
39  Ahmednagar  Pathardi          Agaskhand    Maize         10.0

import pandas as pd

import numpy as np

D=pd.read_excel("/media/desktop/Sample-2.xlsx","Sheet1")

village=D["Village Name"].unique()

crop=D["Crop"].unique()

q1=[]

for i in village:

    for j in crop:
        a=D["Village Name"]==i
        b=D["Crop"]==j
        D1=D[a&b]
        q1.append(D1)
q2=[]

for i in q1:

    if i.empty==False:
        q2.append(i)

现在我们可以得到公顷的农作物播种面积,接下来,我们必须计算A村(作物1),%(作物2)...%(作物n)。

公式:对于Crop-1的A村,是Crop-1 /该村中的所有农作物,我们得到该村的Crop-1%,以同样的方式得出Crop-2的%。

所有村庄都一样。

有什么建议吗?

3 个答案:

答案 0 :(得分:1)

每个村庄使用的农作物产量最高的

df1 = df.sort_values(['Village Name','Area in hec'], ascending=[True, False])

df2 = df1.drop_duplicates('Village Name')
print (df2)
      District    Taluka       Village Name     Crop  Area in hec
11  Ahmednagar  Pathardi             Adgaon   Cotton        310.0
9   Ahmednagar  Pathardi          Agaskhand   Bajara        100.0
17  Ahmednagar  Pathardi              Akola   Cotton        550.0
0   Ahmednagar  Pathardi          Alhanwadi   Bajara        370.0
12  Ahmednagar  Pathardi       Ambika Nagar   Cotton        131.0
28  Ahmednagar  Pathardi          Auranjpur  Soybean         45.0
16  Ahmednagar  Pathardi           Badewadi   Cotton        104.0
14  Ahmednagar  Pathardi           Bhalgaon   Cotton        562.0
13  Ahmednagar  Pathardi         Bharajwadi   Cotton        161.0
15  Ahmednagar  Pathardi  Bhawarwadi (N.V.)   Cotton        211.0

以及每种作物的面积百分比:

s = df1.groupby("Crop")['Area in hec'].transform('sum')
df1['perc'] =  df1['Area in hec'].div(s).mul(100)
print (df1.head(10))
      District    Taluka Village Name     Crop  Area in hec       perc
11  Ahmednagar  Pathardi       Adgaon   Cotton        310.0  14.226709
1   Ahmednagar  Pathardi       Adgaon   Bajara        302.0  21.297602
21  Ahmednagar  Pathardi       Adgaon  Soybean         52.0   8.724832
31  Ahmednagar  Pathardi       Adgaon    Maize          1.5   1.176471
9   Ahmednagar  Pathardi    Agaskhand   Bajara        100.0   7.052186
29  Ahmednagar  Pathardi    Agaskhand  Soybean         20.0   3.355705
39  Ahmednagar  Pathardi    Agaskhand    Maize         10.0   7.843137
19  Ahmednagar  Pathardi    Agaskhand   Cotton          0.0   0.000000
17  Ahmednagar  Pathardi        Akola   Cotton        550.0  25.240936
7   Ahmednagar  Pathardi        Akola   Bajara        175.0  12.341326

答案 1 :(得分:0)

首先使用groupby将每个城市的面积总和汇总为总计

total_lands = D.groupby(["Village Name"])['Area in hec'].agg(['sum']).drop_index()

然后按城市和农作物分组以获取每个城市中每种农作物的总量

lands_by_crop = D.groupby(["Village Name","Crop"])['Area in hec'].agg(['sum'])

最终计算百分比...

percentages = lands_by_crop.map(lambda x:x/total_lands[x.index["Village Name"]])

我认为应该起作用(不确定最后一步)...并且可能 有一种更有效的解决方法,我不确定

答案 2 :(得分:0)

要找出明智的农作物数量,请使用以下命令:

D.filter(items = ["VillageName","Crop", "Area"],axis=1).groupby(by = ["VillageName","Crop"])

然后,您可以将作物面积的总和除以面积(D.filter(items = [“ Crop”,“ Area”],axis = 1).groupby(by =“ Crop”))或村庄面积的总和(D .filter(items = [“ VillageName”,“ Area”],axis = 1).groupby(by =“ VillageName”))以获取比例。