在我的数据集中,我有48000个村庄,每个村庄有10到12种庄稼,每个村庄的每种庄稼播种的作物面积,我想找出哪个庄稼在哪个村庄的主要面积,然后找出在所有村庄中,从农作物1到农作物n的百分比是多少。即我想找出村庄明智的作物比例,如果村庄A具有作物1和作物2,那么对于作物1和作物2 A的百分比是
因此,接下来我可以对特定农作物的村庄进行排名。因此,我可以了解哪些农作物播种面积大的作物。
District Taluka Village Name Crop Area in hec
0 Ahmednagar Pathardi Alhanwadi Bajara 370.0
1 Ahmednagar Pathardi Adgaon Bajara 302.0
2 Ahmednagar Pathardi Ambika Nagar Bajara 40.0
3 Ahmednagar Pathardi Bharajwadi Bajara 90.0
4 Ahmednagar Pathardi Bhalgaon Bajara 254.0
5 Ahmednagar Pathardi Bhawarwadi (N.V.) Bajara 35.0
6 Ahmednagar Pathardi Badewadi Bajara 17.0
7 Ahmednagar Pathardi Akola Bajara 175.0
8 Ahmednagar Pathardi Auranjpur Bajara 35.0
9 Ahmednagar Pathardi Agaskhand Bajara 100.0
10 Ahmednagar Pathardi Alhanwadi Cotton 150.0
11 Ahmednagar Pathardi Adgaon Cotton 310.0
12 Ahmednagar Pathardi Ambika Nagar Cotton 131.0
13 Ahmednagar Pathardi Bharajwadi Cotton 161.0
14 Ahmednagar Pathardi Bhalgaon Cotton 562.0
15 Ahmednagar Pathardi Bhawarwadi (N.V.) Cotton 211.0
16 Ahmednagar Pathardi Badewadi Cotton 104.0
17 Ahmednagar Pathardi Akola Cotton 550.0
18 Ahmednagar Pathardi Auranjpur Cotton 0.0
19 Ahmednagar Pathardi Agaskhand Cotton 0.0
20 Ahmednagar Pathardi Alhanwadi Soybean 26.0
21 Ahmednagar Pathardi Adgaon Soybean 52.0
22 Ahmednagar Pathardi Ambika Nagar Soybean 72.0
23 Ahmednagar Pathardi Bharajwadi Soybean 88.0
24 Ahmednagar Pathardi Bhalgaon Soybean 90.0
25 Ahmednagar Pathardi Bhawarwadi (N.V.) Soybean 93.0
26 Ahmednagar Pathardi Badewadi Soybean 100.0
27 Ahmednagar Pathardi Akola Soybean 10.0
28 Ahmednagar Pathardi Auranjpur Soybean 45.0
29 Ahmednagar Pathardi Agaskhand Soybean 20.0
30 Ahmednagar Pathardi Alhanwadi Maize 10.0
31 Ahmednagar Pathardi Adgaon Maize 1.5
32 Ahmednagar Pathardi Ambika Nagar Maize 3.0
33 Ahmednagar Pathardi Bharajwadi Maize 5.0
34 Ahmednagar Pathardi Bhalgaon Maize 12.0
35 Ahmednagar Pathardi Bhawarwadi (N.V.) Maize 51.0
36 Ahmednagar Pathardi Badewadi Maize 5.0
37 Ahmednagar Pathardi Akola Maize 25.0
38 Ahmednagar Pathardi Auranjpur Maize 5.0
39 Ahmednagar Pathardi Agaskhand Maize 10.0
import pandas as pd
import numpy as np
D=pd.read_excel("/media/desktop/Sample-2.xlsx","Sheet1")
village=D["Village Name"].unique()
crop=D["Crop"].unique()
q1=[]
for i in village:
for j in crop:
a=D["Village Name"]==i
b=D["Crop"]==j
D1=D[a&b]
q1.append(D1)
q2=[]
for i in q1:
if i.empty==False:
q2.append(i)
现在我们可以得到公顷的农作物播种面积,接下来,我们必须计算A村(作物1),%(作物2)...%(作物n)。
公式:对于Crop-1的A村,是Crop-1 /该村中的所有农作物,我们得到该村的Crop-1%,以同样的方式得出Crop-2的%。
所有村庄都一样。
有什么建议吗?
答案 0 :(得分:1)
每个村庄使用的农作物产量最高的
df1 = df.sort_values(['Village Name','Area in hec'], ascending=[True, False])
df2 = df1.drop_duplicates('Village Name')
print (df2)
District Taluka Village Name Crop Area in hec
11 Ahmednagar Pathardi Adgaon Cotton 310.0
9 Ahmednagar Pathardi Agaskhand Bajara 100.0
17 Ahmednagar Pathardi Akola Cotton 550.0
0 Ahmednagar Pathardi Alhanwadi Bajara 370.0
12 Ahmednagar Pathardi Ambika Nagar Cotton 131.0
28 Ahmednagar Pathardi Auranjpur Soybean 45.0
16 Ahmednagar Pathardi Badewadi Cotton 104.0
14 Ahmednagar Pathardi Bhalgaon Cotton 562.0
13 Ahmednagar Pathardi Bharajwadi Cotton 161.0
15 Ahmednagar Pathardi Bhawarwadi (N.V.) Cotton 211.0
以及每种作物的面积百分比:
s = df1.groupby("Crop")['Area in hec'].transform('sum')
df1['perc'] = df1['Area in hec'].div(s).mul(100)
print (df1.head(10))
District Taluka Village Name Crop Area in hec perc
11 Ahmednagar Pathardi Adgaon Cotton 310.0 14.226709
1 Ahmednagar Pathardi Adgaon Bajara 302.0 21.297602
21 Ahmednagar Pathardi Adgaon Soybean 52.0 8.724832
31 Ahmednagar Pathardi Adgaon Maize 1.5 1.176471
9 Ahmednagar Pathardi Agaskhand Bajara 100.0 7.052186
29 Ahmednagar Pathardi Agaskhand Soybean 20.0 3.355705
39 Ahmednagar Pathardi Agaskhand Maize 10.0 7.843137
19 Ahmednagar Pathardi Agaskhand Cotton 0.0 0.000000
17 Ahmednagar Pathardi Akola Cotton 550.0 25.240936
7 Ahmednagar Pathardi Akola Bajara 175.0 12.341326
答案 1 :(得分:0)
首先使用groupby将每个城市的面积总和汇总为总计
total_lands = D.groupby(["Village Name"])['Area in hec'].agg(['sum']).drop_index()
然后按城市和农作物分组以获取每个城市中每种农作物的总量
lands_by_crop = D.groupby(["Village Name","Crop"])['Area in hec'].agg(['sum'])
最终计算百分比...
percentages = lands_by_crop.map(lambda x:x/total_lands[x.index["Village Name"]])
我认为应该起作用(不确定最后一步)...并且可能 有一种更有效的解决方法,我不确定
答案 2 :(得分:0)
要找出明智的农作物数量,请使用以下命令:
D.filter(items = ["VillageName","Crop", "Area"],axis=1).groupby(by = ["VillageName","Crop"])
然后,您可以将作物面积的总和除以面积(D.filter(items = [“ Crop”,“ Area”],axis = 1).groupby(by =“ Crop”))或村庄面积的总和(D .filter(items = [“ VillageName”,“ Area”],axis = 1).groupby(by =“ VillageName”))以获取比例。