假设有一些变量都共享相同的值,并且变量df_train
指向该值。
现在,如果我将df_train
重新分配给其他框架,则所有指向与df_train相同的对象的其他变量现在都指向旧值:
mydata = [df_train, df_test]
df_train = pd.concat( ... )
# now the mydata is no longer sharing the same value as df_train
是否可以就地重新分配数据框?像这样:
mydata = [df_train, df_test]
df_train.set(pd.concat(...))
# now mydata still shares state with df_train
答案 0 :(得分:0)
通过使用__init__
方法,我找到了一个解决方案,尽管有点难闻:
mydata = [df_train, df_test]
df_other = # ...
df_train.__init__(df_other)
# now mydata still shares state with df_train