ValueError:操作数无法与形状(1,720,1080,3)(128,)一起广播

时间:2019-08-17 18:21:07

标签: python-3.x numpy face-recognition typing

我的代码给了我一个我不理解的“ ValueError”

我研究了错误语句中的所有文件,并尝试正确访问模块的受保护成员。


import face_recognition
import cv2
import numpy as np
import numpy.core._multiarray_umath as pr


video_capture = cv2.VideoCapture(0)


image_of_person = face_recognition.load_image_file(
    "/Users/mynameisjeff..../projects/projects/varish-project/known-face/varishdad1.jpg")
known_face_encodings: pr.ndarray = face_recognition.face_encodings(image_of_person)[0]




known_face_encodings = [
    image_of_person,

]
known_face_names = [
    "Barack Obama",
    "Joe Biden"
]

# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names: List[Union[str, Any]] = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            print(face_encoding)
            print("i am here4")
            print(known_face_encodings)
            print("i am here 5")
            print(face_encodings)
            print("i am here 6")
            matches: list[Any] = face_recognition.compare_faces(known_face_encodings, face_encoding)
            #list[Any] = face_recognition.compare_faces(known_face_encodings, face_encoding)
            print("i m here7")
            name = "Unknown"

            # # If a match was found in known_face_encodings, just use the first one.
            # if True in matches:
            #     first_match_index = matches.index(True)
            #     name = known_face_names[first_match_index]

            # Or instead, use the known face with the smallest distance to the new face

            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            print("i am here8")
            print(face_distances)
            best_match_index: pr.ndarray[int] = np.argmin(face_distances)
            # noinspection PyTypeChecker
            if matches[best_match_index]:
                # noinspection PyTypeChecker
                name = known_face_names[best_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame

    # Display the results
    top: int
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

错误消息是

  File "/Users/mynameisjeff..../projects/projects/varish-project/facerec3.py", line 78, in <module>
    matches: list[Any] = face_recognition.compare_faces(known_face_encodings, face_encoding)
  File "/Users/mynameisjeff..../anaconda3/lib/python3.7/site-packages/face_recognition/api.py", line 224, in compare_faces
    return list(face_distance(known_face_encodings, face_encoding_to_check) <= tolerance)
  File "/Users/mynameisjeff..../anaconda3/lib/python3.7/site-packages/face_recognition/api.py", line 74, in face_distance
    return np.linalg.norm(face_encodings - face_to_compare, axis=1)
ValueError: operands could not be broadcast together with shapes (1,720,1080,3) (128,) 

我的代码的预期结果是它将为我提供代码中名称之一的输出

0 个答案:

没有答案