嗨,我正在尝试使用LSTM模型训练数据。我的数据集具有2个特征和16个类。
我有几个问题: 1:训练和验证中的准确性都是波动。我应该如何解决这个问题。 2:验证数据的准确性没有提高
numFeatures = 2;
numHiddenUnits = 250;
numClasses = 16;
options = trainingOptions('adam', ...
'ExecutionEnvironment','gpu', ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'GradientThreshold',2, ...
'SequenceLength',10000,...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','never', ...
'ValidationData',{Input_Val,Output_Val}, ...
'ValidationFrequency',5, ...
'Verbose',0, ...
'Plots','training-progress');
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
dropoutLayer(0.2)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
dropoutLayer(0.2)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];