尾气程序包中的gelman.diag()
函数在计算多元潜在标度缩减因子(MPSRF)时引发错误。
> load("short_mcmc_list.rda")
> niter(short.mcmc.list)
[1] 100
> nvar(short.mcmc.list)
[1] 200
> nchain(short.mcmc.list)
[1] 2
>
> coda::gelman.diag(
short.mcmc.list,
autoburnin = FALSE,
multivariate = TRUE
)
chol.default(W)中的错误: 199号命令的未成年人不是肯定的
此错误是什么意思?
此问题先前发布在R coda "The leading minor of order 3 is not positive definite"。主要结论是:“结论:获得Gelman-Rubin诊断的多元估计值似乎有些问题。设置多元= FALSE可以解决问题,并为每个变量输出一个单一的变量估计值。”它已经6岁了,所以答案可能已过时。
答案 0 :(得分:1)
在gelman.diag()
中,MPSRF的计算公式为:
> coda::gelman.diag <-
function (x, confidence = 0.95, transform = FALSE, autoburnin = FALSE,
multivariate = TRUE)
{
#A lot of code ...
Niter <- niter(x)
Nchain <- nchain(x)
Nvar <- nvar(x)
#W is the variance matrix of the chain
S2 <- array(sapply(x, var, simplify = TRUE), dim = c(Nvar,
Nvar, Nchain))
W <- apply(S2, c(1, 2), mean)
#A lot of code ...
if (Nvar > 1 && multivariate) {
CW <- chol(W)
#This is max eigenvalue from W^-1*B.
emax <- eigen(
backsolve(CW, t(backsolve(CW, B, transpose = TRUE)), transpose = TRUE),
symmetric = TRUE, only.values = TRUE)$values[1]
}
我通过删除引起错误的Cholesky分解,并将W和B添加到要返回的列表中来编辑gelman.diag()
。这使我明白了为什么W
无法进行Cholesky分解。
my.gelman.diag <- function(x,
confidence = 0.95,
transform = FALSE,
autoburnin = FALSE,
multivariate = TRUE
){
x <- as.mcmc.list(x)
if (nchain(x) < 2)
stop("You need at least two chains")
if (autoburnin && start(x) < end(x)/2)
x <- window(x, start = end(x)/2 + 1)
Niter <- niter(x)
Nchain <- nchain(x)
Nvar <- nvar(x)
xnames <- varnames(x)
if (transform)
x <- gelman.transform(x)
x <- lapply(x, as.matrix)
S2 <- array(sapply(x, var, simplify = TRUE),
dim = c(Nvar, Nvar, Nchain)
)
W <- apply(S2, c(1, 2), mean)
xbar <- matrix(sapply(x, apply, 2, mean, simplify = TRUE),
nrow = Nvar, ncol = Nchain)
B <- Niter * var(t(xbar))
if (Nvar > 1 && multivariate) { #ph-edits
# CW <- chol(W)
# #This is W^-1*B.
# emax <- eigen(
# backsolve(CW, t(backsolve(CW, B, transpose = TRUE)), transpose = TRUE),
# symmetric = TRUE, only.values = TRUE)$values[1]
emax <- 1
mpsrf <- sqrt((1 - 1/Niter) + (1 + 1/Nvar) * emax/Niter)
} else {
mpsrf <- NULL
}
w <- diag(W)
b <- diag(B)
s2 <- matrix(apply(S2, 3, diag), nrow = Nvar, ncol = Nchain)
muhat <- apply(xbar, 1, mean)
var.w <- apply(s2, 1, var)/Nchain
var.b <- (2 * b^2)/(Nchain - 1)
cov.wb <- (Niter/Nchain) * diag(var(t(s2), t(xbar^2)) - 2 *
muhat * var(t(s2), t(xbar)))
V <- (Niter - 1) * w/Niter + (1 + 1/Nchain) * b/Niter
var.V <- ((Niter - 1)^2 * var.w + (1 + 1/Nchain)^2 * var.b +
2 * (Niter - 1) * (1 + 1/Nchain) * cov.wb)/Niter^2
df.V <- (2 * V^2)/var.V
df.adj <- (df.V + 3)/(df.V + 1)
B.df <- Nchain - 1
W.df <- (2 * w^2)/var.w
R2.fixed <- (Niter - 1)/Niter
R2.random <- (1 + 1/Nchain) * (1/Niter) * (b/w)
R2.estimate <- R2.fixed + R2.random
R2.upper <- R2.fixed + qf((1 + confidence)/2, B.df, W.df) *
R2.random
psrf <- cbind(sqrt(df.adj * R2.estimate), sqrt(df.adj * R2.upper))
dimnames(psrf) <- list(xnames, c("Point est.", "Upper C.I."))
out <- list(psrf = psrf, mpsrf = mpsrf, B = B, W = W) #added ph
class(out) <- "gelman.diag"
return( out )
}
将my.gelman.diag()
应用于short.mcmc.list
:
> l <- my.gelman.diag(short.mcmc.list, autoburnin = FALSE, multivariate = TRUE)
> W <- l$W #Within-sequence variance
> B <- l$B #Between-sequence variance
对W的研究表明W确实是正定的,但其特征值接近0,因此失败。
> evals.W <- eigen(W, only.values = TRUE)$values
> min(evals.W)
[1] 1.980596e-16
实际上,增加容差表明W确实是正定的。
> matrixNormal::is.positive.definite(W, tol = 1e-18)
[1] TRUE
所以实际上,W接近线性相关性...
> eval <- eigen(solve(W)%*%B, only.values = TRUE)$values[1]
solve.default(W)中的错误: 系统在计算上是奇异的:倒数条件数= 7.10718e-21
因此,实际上,删除W的最后两列使其成为线性独立/正定。这表明链中存在相关的参数,并且可以减少参数的数量。
> evals.W[198]
[1] 9.579362e-05
> matrixNormal::is.positive.definite(W[1:198, 1:198])
[1] TRUE
> chol.W <- chol(W)
W是马尔可夫链的内方差,衡量状态中每个值与平均值之间的差异。如果W接近奇异,则方差很小,因此链变化不大。这是一条缓慢移动的链条。用户应使用轨迹图进行调查,并可能减少参数数量。链条也可能太短;如果链较长,则链中的值可能会足够不同,以使W线性独立。
为避免函数崩溃,我建议使用purrr::possibly()
代替丢失的值,而不要引发过时的错误。
> pgd <- purrr::possibly(coda::gelman.diag, list(mpsrf = NA), quiet = FALSE)
> pgd(short.mcmc.list, autoburnin = FALSE, multivariate = TRUE)
Error: the leading minor of order 199 is not positive definite
[1] NA
有关更多信息,请参见Brooks and Gelman,1992。
参考: Gelman,A和Rubin,DB(1992年),《使用多个序列进行迭代仿真的推论》,《统计科学》,第7卷,第457-511页。