为了从图像中滤除颜色,必须设置需要检测哪种颜色的边界。我觉得这主要是一个反复试验的过程。有什么方法可以快速找到特定颜色的正确阈值?在这种特定情况下,我尝试检测下图中的图形的灰色区域。当然,这没有检测到虚线。对于此示例,我需要非常具体的界限。问题是,如何才能轻松找到它们?
hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 0], np.uint8)
upper = np.array([180, 255, 200], np.uint8)
mask = cv2.inRange(hsv, lower, upper)
答案 0 :(得分:3)
您可以使用HSV颜色阈值脚本来隔离所需的颜色范围
import cv2
import sys
import numpy as np
def nothing(x):
pass
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
img = cv2.imread('1.png')
output = img
waitTime = 33
while(1):
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(img,img, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(waitTime) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
答案 1 :(得分:1)
另一种选择是使用online image color picker。您可以上传图片,并获得HSV: 97.5° 5.1% 61.57%
之类的值。注意,您需要将它们转换为H,S和V的OpenCV比例尺。
H,OpenCV中的色相从0到180不等,但在外部世界中,色相通常以0到360度为单位进行测量,因此要获得颜色h = 97.5° / 2 = 48.7
S和V的测量范围是0 ( = 0% in outer world)
至255 ( = 100% in outer world)
,所以
s = 255 * 5.1% = 13
v = 255 * 61.57% = 157
因此,目标HSV颜色为(49, 13, 157)
。我建议使用±10作为范围。或者更加严格。我认为,对于您的情况,只选择中心图的像素,不带任何标签,然后根据需要应用形态学运算就可以了。