我在Pytorch中有以下用于自动编码器的数据加载器
class DataLoader(data.DataLoader):
def __init__(self, *args, **kwargs):
super(DataLoader, self).__init__(*args, **kwargs)
self.iterator = self.__iter__()
def __next__(self):
try:
return next(self.iterator)
except:
self.iterator = self.__iter__()
return next(self.iterator)
在运行损失函数计算时,我希望将预测显示为数据集中第一个文件的图像,但是即使我只有一批要训练的2张图像,这些图像也被交换了,所以我的代码是:
class CrossEntropyLoss2d(nn.Module):
def __init__(self, weight=None):
super(CrossEntropyLoss2d, self).__init__()
def forward(self, pred, target, weight=None):
pred = pred.clamp(min=1e-16)
plt.clf()
predpic = (np.uint8(np.argmax(pred.data.cpu().numpy(), 1)))
plt.imshow(predpic[0]) ### here I want only the first picture!
plt.title('Example prediction')
plt.savefig(os.path.join(results_path, "exampleprediction.png"))
plt.show()
##### COMPUTE LOSS
loss = -(pred.log() * target)
loss = loss.sum(1)
if weight is not None:
loss = loss * weight
loss = loss.mean()
return loss
不起作用。
我该如何解决?谢谢!