如何将串联的列名称拆分为单独的列?

时间:2019-08-09 13:33:33

标签: python string pandas split

为了进行分析,我获得了一个列名,其中包含有关产品,市场和分销的特定信息。

数据集的结构如下:

Date     Product1|CBA|MKD  Product1|CPA|MKD     Product1|CBA|IHR    Product2|CBA|IHR
2018-11  12                 23                   0                   2

有很多独特的列组合。我想做的就是得到以下结构:

Date      Product    Partner   Market      Quantity
2020-1    Product1   CBA       MKD         11
2020-1    Product1   CPA       MKD         22
2020-1    Product1   CBA       IHR         0
2020-1    Product2   CBA       IHR         1

因此,我想创建3个不同的列,并使用列名称中的粘贴值填充它们。数量列显然将包含旧的串联列的值(我知道该位),问题是获取了前3列。

我试图通过匹配字符串在熊猫中做到这一点,但我真的很困。感谢您的帮助!

3 个答案:

答案 0 :(得分:3)

您似乎可以使用pandas.melt

df_ = df.melt(id_vars = 'Date', value_name = 'Quantity')
df_[['Product', 'Partner','Market']] = df_.variable.str.split('|', 
                                                             expand = True)\
                                                        .dropna(axis = 1) 
df_.pop('variable')
df_
Out[67]: 
      Date  Quantity   Product Partner Market
0  2018-11        12  Product1     CBA    MKD
1  2018-11        23  Product1     CPA    MKD
2  2018-11         0  Product1     CBA    IHR
3  2018-11         2  Product2     CBA    IHR

答案 1 :(得分:2)

这是另一种方法:

st = df.set_index("Date").stack().reset_index(-1)
res = st["level_1"].str.split("|")
st[["Product","Partner","Market"]] = pd.DataFrame(res.tolist(), index=st.index)
df2 = st.drop("level_1", axis=1).rename({0:"Quantity"}, axis=1)

print(df2)
         Quantity   Product Partner Market
Date
2018-11        12  Product1     CBA    MKD
2018-11        23  Product1     CPA    MKD
2018-11         0  Product1     CBA    IHR
2018-11         2  Product2     CBA    IHR

答案 2 :(得分:1)

a = df.melt(id_vars=["Date"],var_name="Product", 
    value_name="Val").dropna(how='any').sort_values('Date')
a['Partner'] = a['Product'].str.split("|").str[1]
a['Market'] = a['Product'].str.split("|").str[-1]
a['Product']= a['Product'].str.split("|").str[0]