Spark中的执行器超时错误

时间:2019-08-09 13:26:23

标签: apache-spark pyspark

我正在尝试执行以下操作:

  1. 采用数据框
  2. 将其转换为rdd
  3. 执行一系列操作
  4. 通过键+ rdds的联合减少
  5. 将其转换回数据框
  6. 保存到s3

我尝试使用数据帧,但是在这种情况下,由于某些行的大小超过2GB,我最终遇到了OOM错误。

在作业运行期间,当我尝试将数据帧写为实木复合地板时,运行失败并出现以下错误:

/databricks/spark/python/pyspark/sql/readwriter.pyc in parquet(self, path, mode, partitionBy, compression)
    837             self.partitionBy(partitionBy)
    838         self._set_opts(compression=compression)
--> 839         self._jwrite.parquet(path)
    840 
    841     @since(1.6)

/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/databricks/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o589402.parquet.
: org.apache.spark.SparkException: Job aborted.
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:192)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:110)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:108)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:128)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:146)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:134)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:187)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:183)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:134)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:114)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:114)
    at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:710)
    at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:710)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:111)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:240)
    at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:97)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:170)
    at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:710)
    at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:306)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:292)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:235)
    at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:600)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
    at py4j.Gateway.invoke(Gateway.java:295)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:251)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 29 in stage 40.0 failed 4 times, most recent failure: Lost task 29.3 in stage 40.0 (TID 3394, 10.46.190.16, executor 26): ExecutorLostFailure (executor 26 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 173204 ms
Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2355)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2343)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2342)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2342)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1096)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1096)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1096)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2574)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2522)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2510)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:893)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2243)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:167)
    ... 34 more

我试图找出可能导致此故障的原因?似乎是由于执行程序之一没有发出心跳响应,但令我感到惊讶的是,因为数据帧开始时并没有那么大。任何帮助将不胜感激。

如果我的数据框很小,那么将其写入s3便没有问题

0 个答案:

没有答案