我需要在数据帧(https://pastebin.com/kNqLtUWu)中的dates
上执行验证,检查date
是否有效。如果date
无效(即pd.to_datetime
无法解析-例如0107-01-06),我需要在Fail
列中填充Yes
。
我对包含日期的列进行了子集处理,能够识别包含无效日期的列并将其添加到字典中,但是还没有弄清楚如何返回特定行。
我对其他方法持开放态度,但是我需要使用pandas
并以Fail列结束以指示该行,我计划以此过滤最终的数据帧(一个数据帧包含日期和日期错误的行,另一个没有错误)。
有关完整代码,请参见pastebin链接
# insert empty Fail column to identify date errors
df.insert(loc=0, column='Fail', value="")
# replace all blanks with np.NaN
df.replace(r"^s*$", np.nan, regex=True, inplace = True)
# get list of date columns
cols = list(df)
date_cols = cols[2:]
# create empty dict
dfs = {}
# iterate over date columns to identify which columns contain invalid dates & add to dfs
for col in df[date_cols]:
try:
df[col] = df[col].apply(pd.to_datetime, errors='raise')
except:
print("%s column contains invalid date" % col)
dfs[col] = df[col]
答案 0 :(得分:1)
您所描述的问题可以通过coerce
和一些逻辑来解决:
# original non_null
notnull = df[col].notnull()
# where to_datetime fails
not_datetime = pd.to_datetime(df[col], errors='coerce').isna()
not_datetime = not_datetime & notnull
答案 1 :(得分:1)
IIUC,您所关心的是创建Fail
列。因此,我专注于创建它。
我认为您可以在日期时间列上使用apply
,并使用自定义Lambda在axis = 1上进行切片。在将每个切片与NaN
传递到pd.to_datetime
之前,lambda会过滤掉coerce
并从输出中检查任何NaT
。
df['Fail'] = (df[date_cols].apply(lambda x: pd.to_datetime(x[x.notna()], errors='coerce')
.isna().any(), axis=1).replace({True: 'Fail', False: ''}))
Out[869]:
Fail patient_ID DateOfBirth ... date_10 date_11 date_12
0 A001 1950-03-02 ... NaT NaT NaN
1 A001 1950-03-02 ... NaT NaT NaN
2 A001 1950-03-02 ... NaT NaT NaN
3 A001 1950-03-02 ... NaT NaT NaN
4 A001 1950-03-02 ... 2010-01-01 NaT NaN
5 A001 1950-03-02 ... NaT 2010-01-01 NaN
6 A001 1950-03-02 ... NaT NaT 1/1/2010
7 A001 1950-03-02 ... NaT NaT 1/1/2010
8 A001 1950-03-02 ... NaT NaT 1/1/2010
9 A001 1950-03-02 ... NaT NaT 1/1/2010
10 A001 1950-03-02 ... NaT NaT 1/1/2010
11 A001 1950-03-02 ... NaT NaT 1/1/2010
12 A001 1950-03-02 ... NaT NaT 1/1/2010
13 A001 1950-03-02 ... NaT NaT 1/1/2010
14 A001 1950-03-02 ... NaT NaT 1/1/2010
15 Fail A002 1950-03-02 ... NaT NaT NaN
16 A002 1950-03-02 ... NaT NaT NaN
17 A002 1950-03-02 ... NaT NaT NaN
18 A002 1950-03-02 ... NaT NaT NaN
19 A002 1950-03-02 ... 2010-01-01 NaT NaN
20 A002 1950-03-02 ... NaT 2010-01-01 NaN
21 A002 1950-03-02 ... NaT NaT 1/1/2010
22 A002 1950-03-02 ... NaT NaT 1/1/2010
23 A002 1950-03-02 ... NaT NaT 1/1/2010
24 A002 1950-03-02 ... NaT NaT 1/1/2010
25 A002 1950-03-02 ... NaT NaT 1/1/2010
26 A002 1950-03-02 ... NaT NaT 1/1/2010
27 A002 1950-03-02 ... NaT NaT 1/1/2010
28 A002 1950-03-02 ... NaT NaT 1/1/2010
29 Fail A002 1950-03-02 ... NaT NaT 0107-01-06
[30 rows x 15 columns]
注意:
上面的代码用于创建Fail
列。不会将这些列转换为日期时间。要转换它们,您只需要分别调用pd.to_datetime
。
下面是两行的值,其中Fail
In [870]: df.loc[15]
Out[870]:
Fail Fail
patient_ID A002
DateOfBirth 1950-03-02 00:00:00
date_1 0107-01-06
date_2 2010-01-01 00:00:00
date_3 NaT
date_4 NaT
date_5 NaT
date_6 NaT
date_7 NaT
date_8 NaT
date_9 NaT
date_10 NaT
date_11 NaT
date_12 NaN
Name: 15, dtype: object
In [871]: df.loc[29]
Out[871]:
Fail Fail
patient_ID A002
DateOfBirth 1950-03-02 00:00:00
date_1 NaN
date_2 NaT
date_3 NaT
date_4 NaT
date_5 NaT
date_6 NaT
date_7 NaT
date_8 NaT
date_9 NaT
date_10 NaT
date_11 NaT
date_12 0107-01-06
Name: 29, dtype: object