我有一个VoiceActivityDetector的代码,想给出一个函数中的值Speech_ratio
我试图设置一个新函数以打印出值
def __init__(self, wave_input_filename):
self._read_wav(wave_input_filename)._convert_to_mono()
self.sample_window = 0.02 #20 ms
self.sample_overlap = 0.01 #10ms
self.speech_window = 0.5 #half a second
self.speech_energy_threshold = 0.6 #60% of energy in voice band
self.speech_start_band = 300
self.speech_end_band = 3000
#self.speech_ratio = 0
def detect_speech(self):
""" Detects speech regions based on ratio between speech band energy
and total energy.
Output is array of window numbers and speech flags (1 - speech, 0 - nonspeech).
"""
detected_windows = np.array([])
sample_window = int(self.rate * self.sample_window)
sample_overlap = int(self.rate * self.sample_overlap)
data = self.data
sample_start = 0
start_band = self.speech_start_band
end_band = self.speech_end_band
while (sample_start < (len(data) - sample_window)):
sample_end = sample_start + sample_window
if sample_end>=len(data): sample_end = len(data)-1
data_window = data[sample_start:sample_end]
energy_freq = self._calculate_normalized_energy(data_window)
sum_voice_energy = self._sum_energy_in_band(energy_freq, start_band, end_band)
sum_full_energy = sum(energy_freq.values())
speech_ratio = sum_voice_energy/sum_full_energy
#self.speech_ratio2 = speech_ratio
# Hipothesis is that when there is a speech sequence we have ratio of energies more than Threshold
speech_ratio = speech_ratio>self.speech_energy_threshold
detected_windows = np.append(detected_windows,[sample_start, speech_ratio])
sample_start += sample_overlap
detected_windows = detected_windows.reshape(int(len(detected_windows)/2),2)
detected_windows[:,1] = self._smooth_speech_detection(detected_windows)
return detected_windows
def printing(self):
print(self.speech_ratio)
return self.speech_ratio
当我在 init 中将Speech_ratio设置为变量时,它以后不会在detect_speech函数中更改该变量。 如果我没有在 init 函数中初始化Speech_ratio,那么它将根本不是对象的属性。
答案 0 :(得分:1)
您使用self.speech_ratio
尝试打印该值;您应该使用相同的表达式来分配它。