我遇到错误:
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
使用如下所示的NVP层:
import tensorflow_probability as tfp
tfb = tfp.bijectors
tfd = tfp.distributions
class NVPLayer(tf.keras.models.Model):
def __init__(self, *, output_dim, num_masked, **kwargs):
super().__init__(**kwargs)
self.output_dim = output_dim
self.num_masked = num_masked
self.shift_and_log_scale_fn = tfb.real_nvp_default_template(
hidden_layers=[2], # HERE HERE ADJUST THIS
activation=None, # linear
)
self.loss = None
def get_nvp(self):
nvp = tfd.TransformedDistribution(
distribution=tfd.MultivariateNormalDiag(loc=[0.] * self.output_dim),
bijector=tfb.RealNVP(
num_masked=self.num_masked,
shift_and_log_scale_fn=self.shift_and_log_scale_fn)
)
return nvp
def call(self, *inputs):
nvp = self.get_nvp()
self.loss = tf.reduce_mean(nvp.log_prob(*inputs)) # how else to do this?
# return nvp.bijector.forward(*inputs)
return nvp.bijector.inverse(*inputs)
我没有在任何地方打tf.init_scope
。训练像这样的图层的简单版本似乎起作用。
我将尝试获得更详细的跟踪,但是我怀疑这与非急切模式的东西有关。
更新:因此,这肯定来自self.loss
包含在某些渐变磁带层中。正确的方法是什么?
答案 0 :(得分:1)
更新:因此,这肯定来自某些渐变磁带层中的self.loss。正确的方法是什么?
我认为正确的方法是
self.add_loss(<your loss tensor>)
({https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer#add_loss了解更多信息)
(编辑,抱歉,我没有注意您的帖子日期,所以我想这已经不再有用了)