目前,我有一个Flink集群,希望按一种模式使用Kafka主题,通过这种方式,我们不需要维护一个硬代码Kafka主题列表。
import java.util.regex.Pattern;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
...
private static final Pattern topicPattern = Pattern.compile("(DC_TEST_([A-Z0-9_]+)");
...
FlinkKafkaConsumer010<KafkaMessage> kafkaConsumer = new FlinkKafkaConsumer010<>(
topicPattern, deserializerClazz.newInstance(), kafkaConsumerProps);
DataStream<KafkaMessage> input = env.addSource(kafkaConsumer);
我只想通过上述方式知道,如何在处理过程中知道真实的Kafka主题名称? 谢谢。
-更新- 我之所以需要了解主题信息,是因为我们需要此主题名称作为即将在Flink接收器部件中使用的参数。
答案 0 :(得分:1)
您可以实现自己的自定义KafkaDeserializationSchema,如下所示:
public class CustomKafkaDeserializationSchema implements KafkaDeserializationSchema<Tuple2<String, String>> {
@Override
public boolean isEndOfStream(Tuple2<String, String> nextElement) {
return false;
}
@Override
public Tuple2<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
return new Tuple2<>(record.topic(), new String(record.value(), "UTF-8"));
}
@Override
public TypeInformation<Tuple2<String, String>> getProducedType() {
return new TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO);
}
}
使用自定义的KafkaDeserializationSchema,可以创建其元素包含主题信息的DataStream。在我的演示案例中,元素类型为Tuple2<String, String>
,因此您可以通过Tuple2#f0
访问主题名称。
FlinkKafkaConsumer010<Tuple2<String, String>> kafkaConsumer = new FlinkKafkaConsumer010<>(
topicPattern, new CustomKafkaDeserializationSchema, kafkaConsumerProps);
DataStream<Tuple2<String, String>> input = env.addSource(kafkaConsumer);
input.process(new ProcessFunction<Tuple2<String,String>, String>() {
@Override
public void processElement(Tuple2<String, String> value, Context ctx, Collector<String> out) throws Exception {
String topicName = value.f0;
// your processing logic here.
out.collect(value.f1);
}
});
答案 1 :(得分:0)
有两种方法可以做到这一点。
选项1:
您可以使用Kafka-clients库访问Kafka元数据,获取主题列表。添加Maven依赖项或等效项。
<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.3.0</version>
</dependency>
您可以从Kafka集群中获取主题,并使用正则表达式进行过滤,如下所示:
private static final Pattern topicPattern = Pattern.compile("(DC_TEST_([A-Z0-9_]+)");
Properties properties = new Properties();
properties.put("bootstrap.servers","localhost:9092");
properties.put("client.id","java-admin-client");
try (AdminClient client = AdminClient.create(properties)) {
ListTopicsOptions options = new ListTopicsOptions();
options.listInternal(false);
Collection<TopicListing> listing = client.listTopics(options).listings().get();
List<String> allTopicsList = listings.stream().map(TopicListing::name)
.collect(Collectors.toList());
List<String> matchedTopics = allTopicsList.stream()
.filter(topicPattern.asPredicate())
.collect(Collectors.toList());
}catch (Exception e) {
e.printStackTrace();
}
}
一旦您匹配了主题列表,就可以将其传递给FlinkKafkaConsumer。
选项2:
Flink版本1.8中的 FlinkKafkaConsumer011
支持基于模式动态地进行主题和分区发现。下面是示例:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
private static final Pattern topicPattern = Pattern.compile("(DC_TEST_([A-Z0-9_]+)");
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<>(
topicPattern ,
new SimpleStringSchema(),
properties);
对于您而言,选项2最合适。
由于您要作为KafkaMessage的一部分访问主题元数据,因此需要实现KafkaDeserializationSchema接口,如下所示:
public class CustomKafkaDeserializationSchema extends KafkaDeserializationSchema<KafkaMessage> {
/**
* Deserializes the byte message.
*
* @param messageKey the key as a byte array (null if no key has been set).
* @param message The message, as a byte array (null if the message was empty or deleted).
* @param partition The partition the message has originated from.
* @param offset the offset of the message in the original source (for example the Kafka offset).
*
* @return The deserialized message as an object (null if the message cannot be deserialized).
*/
@Override
public KafkaMessage deserialize(ConsumerRecord<byte[], byte[]> record) throws IOException {
//You can access record.key(), record.value(), record.topic(), record.partition(), record.offset() to get topic information.
KafkaMessage kafkaMessage = new KafkaMessage();
kafkaMessage.setTopic(record.topic());
// Make your kafka message here and assign the values like above.
return kafkaMessage ;
}
@Override
public boolean isEndOfStream(Long nextElement) {
return false;
}
}
然后致电:
FlinkKafkaConsumer010<Tuple2<String, String>> kafkaConsumer = new FlinkKafkaConsumer010<>(
topicPattern, new CustomKafkaDeserializationSchema, kafkaConsumerProps);