TF-Served_model原型在推断时变慢了

时间:2019-07-29 13:17:15

标签: python tensorflow object-detection tensorflow-serving inference

因此,我已经在Tensorflow中训练了对象检测模型(YOLO-v3),并使用“ TF.saved_model”将其保存为服务格式,以便使用Tensorflow服务托管它。如果不使用TF服务,则每张图片的常规平均推断时间为35毫秒。

但是,当我尝试使用Tensorflow在同一台机器(localhost)上提供服务时,每张图片的推理时间增加到1秒(〜慢30倍!),我无法弄清原因和出了什么问题。

这是我用来将图形转换为TF服务的“ saved_model.pb”的代码:

import tensorflow as tf
IMAGE_H,IMAGE_W = 832,832

def read_pb_return_tensors(graph, pb_file, return_elements):

    with tf.gfile.FastGFile(pb_file, 'rb') as f:
        frozen_graph_def = tf.GraphDef()
        frozen_graph_def.ParseFromString(f.read())

    with graph.as_default():
        return_elements = tf.import_graph_def(frozen_graph_def,
                                              return_elements=return_elements)
        input_tensor, output_tensors = return_elements[0], return_elements[1:]

    return input_tensor, output_tensors

gpu_nms_graph = tf.Graph()

input_tensor, output_tensors = utils.read_pb_return_tensors(gpu_nms_graph, "./checkpoint/yolov3-logos-{}/yolov3-logos-{}_gpu_nms.pb".format(IMAGE_H,IMAGE_H),
                                           ["Placeholder:0", "concat_10:0", "concat_11:0", "concat_12:0"])

with tf.compat.v1.Session(graph=gpu_nms_graph) as sess:
    if os.path.isdir(export_path):
        os.rmdir(export_path)


    builder = tf.saved_model.builder.SavedModelBuilder(export_path)
    #builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_path)

    tensor_info_inputs = {
        'inputs': tf.compat.v1.saved_model.utils.build_tensor_info(input_tensor)
    }


    tensor_info_outputs = {}
    for k,v in enumerate(output_tensors):
        tensor_info_outputs['output_{}'.format(k)] = tf.compat.v1.saved_model.utils.build_tensor_info(v)

    detection_signature = (
        tf.compat.v1.saved_model.signature_def_utils.build_signature_def(
            inputs=tensor_info_inputs,
            outputs=tensor_info_outputs,
            method_name=tf.compat.v1.saved_model.signature_constants.PREDICT_METHOD_NAME))

    builder.add_meta_graph_and_variables(
            sess, [tf.compat.v1.saved_model.tag_constants.SERVING],
            signature_def_map={
                'Detect_logos':
                detection_signature,
                tf.compat.v1.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                detection_signature 
                },
        main_op=tf.tables_initializer(),
        strip_default_attrs=True)
    builder.save()

我正在使用Tensorflow 1.14.0,tensorflow-model-server 1.14.0和tensorflow-serving-api 1.14.0

我还应该提到,几个月前,我使用相同的代码来提供非常相似的模型(也是单类YOLO),即使推理时间延迟也有所增加(从40毫秒到200毫秒),但它却更少重大。当时我正在使用旧版的tensorflow。

0 个答案:

没有答案