我正在尝试使用 pytesseract 模块阅读验证码。它在大多数情况下(但并非始终)提供准确的文本。
这是读取图像,处理图像并从图像中提取文本的代码。
import cv2
import numpy as np
import pytesseract
def read_captcha():
# opencv loads the image in BGR, convert it to RGB
img = cv2.cvtColor(cv2.imread('captcha.png'), cv2.COLOR_BGR2RGB)
lower_white = np.array([200, 200, 200], dtype=np.uint8)
upper_white = np.array([255, 255, 255], dtype=np.uint8)
mask = cv2.inRange(img, lower_white, upper_white) # could also use threshold
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))) # "erase" the small white points in the resulting mask
mask = cv2.bitwise_not(mask) # invert mask
# load background (could be an image too)
bk = np.full(img.shape, 255, dtype=np.uint8) # white bk
# get masked foreground
fg_masked = cv2.bitwise_and(img, img, mask=mask)
# get masked background, mask must be inverted
mask = cv2.bitwise_not(mask)
bk_masked = cv2.bitwise_and(bk, bk, mask=mask)
# combine masked foreground and masked background
final = cv2.bitwise_or(fg_masked, bk_masked)
mask = cv2.bitwise_not(mask) # revert mask to original
# resize the image
img = cv2.resize(mask,(0,0),fx=3,fy=3)
cv2.imwrite('ocr.png', img)
text = pytesseract.image_to_string(cv2.imread('ocr.png'), lang='eng')
return text
对于图像的操作,我从这篇stackoverflow帖子中得到了帮助。
这是原始的验证码图像:
此图像是在操作后生成的:
但是,通过使用 pytesseract ,我收到了文本: AX#7rL 。
有人可以指导我如何将成功率提高到100%吗?
答案 0 :(得分:2)
由于您生成的图像中有微小的孔,因此应在此处进行形态转换,尤其是cv2.MORPH_CLOSE
,以闭合孔并平滑图像
Threshold获得二进制图像(黑白)
执行morphological operations来关闭前景中的小孔
反转图像以获得结果
4X#7rL
在插入tesseract之前,可能cv2.GaussianBlur()
也会有所帮助
import cv2
import pytesseract
# Path for Windows
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# Read in image as grayscale
image = cv2.imread('1.png',0)
# Threshold to obtain binary image
thresh = cv2.threshold(image, 220, 255, cv2.THRESH_BINARY)[1]
# Create custom kernel
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
# Perform closing (dilation followed by erosion)
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# Invert image to use for Tesseract
result = 255 - close
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('result', result)
# Throw image into tesseract
print(pytesseract.image_to_string(result))
cv2.waitKey()