当我使用PyTorch创建神经网络时,使用torch.nn.Sequential
方法定义图层,默认情况下,参数似乎具有requires_grad = False
。但是,当我训练该网络时,损耗会减少。如果不通过渐变更新图层,怎么办?
例如,这是定义我的网络的代码:
class Network(torch.nn.Module):
def __init__(self):
super(Network, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(10, 5),
torch.nn.Linear(5, 2)
)
print('Network Parameters:')
model_dict = self.state_dict()
for param_name in model_dict:
param = model_dict[param_name]
print('Name: ' + str(param_name))
print('\tRequires Grad: ' + str(param.requires_grad))
def forward(self, input):
prediction = self.layers(input)
return prediction
这会打印出来:
Network Parameters:
Name: layers.0.weight
Requires Grad: False
Name: layers.0.bias
Requires Grad: False
Name: layers.1.weight
Requires Grad: False
Name: layers.1.bias
Requires Grad: False
然后这是训练我的网络的代码:
network = Network()
network.train()
optimiser = torch.optim.SGD(network.parameters(), lr=0.001)
criterion = torch.nn.MSELoss()
inputs = np.random.random([100, 10]).astype(np.float32)
inputs = torch.from_numpy(inputs)
labels = np.random.random([100, 2]).astype(np.float32)
labels = torch.from_numpy(labels)
while True:
prediction = network.forward(inputs)
loss = criterion(prediction, labels)
print('loss = ' + str(loss.item()))
optimiser.zero_grad()
loss.backward()
optimiser.step()
这会打印出来:
loss = 0.284633219242
loss = 0.278225809336
loss = 0.271959483624
loss = 0.265835255384
loss = 0.259853869677
loss = 0.254015892744
loss = 0.248321473598
loss = 0.242770522833
loss = 0.237362638116
loss = 0.232097044587
loss = 0.226972639561
loss = 0.221987977624
loss = 0.217141270638
loss = 0.212430402637
loss = 0.207852959633
loss = 0.203406244516
loss = 0.199087426066
loss = 0.19489350915
loss = 0.190821439028
loss = 0.186868071556
loss = 0.183030322194
loss = 0.179305106401
loss = 0.175689414144
loss = 0.172180294991
loss = 0.168774917722
loss = 0.165470585227
loss = 0.162264674902
loss = 0.159154698253
如果所有参数都具有requires_grad = False
,为什么损耗会减小?
答案 0 :(得分:3)
这很有趣-state_dict()
和parameters()
之间似乎有所不同:
class Network(torch.nn.Module):
def __init__(self):
super(Network, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(10, 5),
torch.nn.Linear(5, 2)
)
print(self.layers[0].weight.requires_grad) # True
print(self.state_dict()['layers.0.weight'].requires_grad) # False
print(list(self.parameters())[0].requires_grad) # True
def forward(self, input):
prediction = self.layers(input)
return prediction
因此看来您的损失正在减少,因为网络实际上是在学习,因为requires_grad
为True。 (通常,对于调试,我更喜欢查询实际对象(self.layers[0]...
)。
[EDIT]啊-发现了问题:存在一个keep_vars
布尔选项,您可以将其传递到state_dict
中,该选项可以执行以下操作(以及其他操作):(https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/module.py#L665)>
for name, param in self._parameters.items():
if param is not None:
destination[prefix + name] = param if keep_vars else param.data
因此,如果要使用实际的param
,请使用keep_vars=True
-如果只需要数据,请使用默认的keep_vars=False
。
所以:
print(self.layers[0].weight.requires_grad) # True
print(self.state_dict(keep_vars=True)['layers.0.weight'].requires_grad) # True
print(list(self.parameters())[0].requires_grad) # True