我有一个如下所示的DataFrame
ID Date Amount amount_4wk_rolling
10001 2019-07-01 50 60
10001 2019-05-01 15 15
10001 2019-06-25 10 30
10001 2019-05-27 20 35
10002 2019-06-29 25 25
10002 2019-07-18 35 100
10002 2019-07-15 40 65
我想从“金额”列中获取一个基于日期列的4周滚动总和。我的意思是,基本上,我需要再增加一列(例如,amount_4wk_rolling),该列将有4周的所有行的金额列之和。因此,如果行中的日期为2019-07-01,则amount_4wk_rolling列值应为日期在2019-07-01至2019-06-04(2019-07-01)之间的所有行的总和减去28天)。 因此,新的DataFrame看起来像这样。
Edit:
My data is huge...about a TB in size. Ideally, I would like to do this in spark rather that in pandas
我尝试使用窗口函数,只是它不允许我根据特定列的值选择窗口
<plugin name="cordova-plugin-geolocation" spec="*" />
<plugin name="phonegap-plugin-push" spec="2.1.3" />
答案 0 :(得分:3)
根据建议,您可以将Date
上的.rolling
与“ 28d”一起使用。
(从您的示例值中)似乎还希望将滚动窗口按ID分组。
尝试一下:
import pandas as pd
from io import StringIO
s = """
ID Date Amount
10001 2019-07-01 50
10001 2019-05-01 15
10001 2019-06-25 10
10001 2019-05-27 20
10002 2019-06-29 25
10002 2019-07-18 35
10002 2019-07-15 40
"""
df = pd.read_csv(StringIO(s), sep="\s+")
df['Date'] = pd.to_datetime(df['Date'])
amounts = df.groupby(["ID"]).apply(lambda g: g.sort_values('Date').rolling('28d', on='Date').sum())
df['amount_4wk_rolling'] = df["Date"].map(amounts.set_index('Date')['Amount'])
print(df)
输出:
ID Date Amount amount_4wk_rolling
0 10001 2019-07-01 50 60.0
1 10001 2019-05-01 15 15.0
2 10001 2019-06-25 10 10.0
3 10001 2019-05-27 20 35.0
4 10002 2019-06-29 25 25.0
5 10002 2019-07-18 35 100.0
6 10002 2019-07-15 40 65.0
答案 1 :(得分:1)
我认为熊猫滚动方法是基于该指数的。因此执行:
df.index = df['Date']
然后执行由您的时间范围指定的滚动方法可以解决问题。
另请参阅文档(特别是文档底部的文档): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
编辑:您也可以使用注释中指出的参数on='Date'
,无需重新编制索引。
答案 2 :(得分:0)
这可以通过pandas_udf
完成,看起来您想与“ ID”分组,所以我将其用作组ID。
spark = SparkSession.builder.appName('test').getOrCreate()
df = spark.createDataFrame([Row(ID=10001, d='2019-07-01', Amount=50),
Row(ID=10001, d='2019-05-01', Amount=15),
Row(ID=10001, d='2019-06-25', Amount=10),
Row(ID=10001, d='2019-05-27', Amount=20),
Row(ID=10002, d='2019-06-29', Amount=25),
Row(ID=10002, d='2019-07-18', Amount=35),
Row(ID=10002, d='2019-07-15', Amount=40)
])
df = df.withColumn('date', F.to_date('d', 'yyyy-MM-dd'))
df = df.withColumn('prev_date', F.date_sub(df['date'], 28))
df.select(["ID", "prev_date", "date", "Amount"]).orderBy('date').show()
df = df.withColumn('amount_4wk_rolling', F.lit(0.0))
@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP)
def roll_udf(pdf):
for index, row in pdf.iterrows():
d, pd = row['date'], row['prev_date']
pdf.loc[pdf['date']==d, 'amount_4wk_rolling'] = np.sum(pdf.loc[(pdf['date']<=d)&(pdf['date']>=pd)]['Amount'])
return pdf
df = df.groupby('ID').apply(roll_udf)
df.select(['ID', 'date', 'prev_date', 'Amount', 'amount_4wk_rolling']).orderBy(['ID', 'date']).show()
输出:
+-----+----------+----------+------+
| ID| prev_date| date|Amount|
+-----+----------+----------+------+
|10001|2019-04-03|2019-05-01| 15|
|10001|2019-04-29|2019-05-27| 20|
|10001|2019-05-28|2019-06-25| 10|
|10002|2019-06-01|2019-06-29| 25|
|10001|2019-06-03|2019-07-01| 50|
|10002|2019-06-17|2019-07-15| 40|
|10002|2019-06-20|2019-07-18| 35|
+-----+----------+----------+------+
+-----+----------+----------+------+------------------+
| ID| date| prev_date|Amount|amount_4wk_rolling|
+-----+----------+----------+------+------------------+
|10001|2019-05-01|2019-04-03| 15| 15.0|
|10001|2019-05-27|2019-04-29| 20| 35.0|
|10001|2019-06-25|2019-05-28| 10| 10.0|
|10001|2019-07-01|2019-06-03| 50| 60.0|
|10002|2019-06-29|2019-06-01| 25| 25.0|
|10002|2019-07-15|2019-06-17| 40| 65.0|
|10002|2019-07-18|2019-06-20| 35| 100.0|
+-----+----------+----------+------+------------------+
答案 3 :(得分:0)
对于pyspark,您可以只使用Window函数:sum + RangeBetween
from pyspark.sql import functions as F, Window
# skip code to initialize Spark session and dataframe
>>> df.show()
+-----+----------+------+
| ID| Date|Amount|
+-----+----------+------+
|10001|2019-07-01| 50|
|10001|2019-05-01| 15|
|10001|2019-06-25| 10|
|10001|2019-05-27| 20|
|10002|2019-06-29| 25|
|10002|2019-07-18| 35|
|10002|2019-07-15| 40|
+-----+----------+------+
>>> df.printSchema()
root
|-- ID: long (nullable = true)
|-- Date: string (nullable = true)
|-- Amount: long (nullable = true)
win = Window.partitionBy('ID').orderBy(F.to_timestamp('Date').astype('long')).rangeBetween(-28*86400,0)
df_new = df.withColumn('amount_4wk_rolling', F.sum('Amount').over(win))
>>> df_new.show()
+------+-----+----------+------------------+
|Amount| ID| Date|amount_4wk_rolling|
+------+-----+----------+------------------+
| 25|10002|2019-06-29| 25|
| 40|10002|2019-07-15| 65|
| 35|10002|2019-07-18| 100|
| 15|10001|2019-05-01| 15|
| 20|10001|2019-05-27| 35|
| 10|10001|2019-06-25| 10|
| 50|10001|2019-07-01| 60|
+------+-----+----------+------------------+