我正在尝试创建一个新的pandas列,该列是来自另一列的规范化数据。
我创建了三个单独的系列,然后将它们合并为一个。 虽然这种方法为我提供了理想的结果,但我想知道是否有更好的方法可以做到这一点。
x = df["Data Col"].copy()
#if the value is between 70 and 30 find the difference of the previous value.
#Positive difference = 1 & Negative difference = -1
btw = pd.Series(np.where(x.between(30, 70, inclusive=False), x.diff(), 0))
btw[btw < 0] = -1
btw[btw > 0] = 1
#All values above 70 are -1
up = pd.Series(np.where(x.gt(70), -1, 0))
#All values below 30 are 1
dw = pd.Series(np.where(x.lt(30), 1, 0))
combined = up + dw + btw
df["Normalised Col"] = np.array(combined)
我尝试直接在Pandas数据列上使用函数和循环,但我不知道如何获取.diff()
答案 0 :(得分:0)
将numpy.select
与链掩码一起使用,&
用于按位AND
,|
用于按位OR
:
np.random.seed(2019)
df = pd.DataFrame({'Data Col':np.random.randint(10, 100, size=10)})
#print (df)
d = df["Data Col"].diff()
m1 = df["Data Col"].between(30, 70, inclusive=False)
m2 = d < 0
m3 = d > 0
m4 = df["Data Col"].gt(70)
m5 = df["Data Col"].lt(30)
df["Normalised Col1"] = np.select([(m1 & m2) | m4, (m1 & m3) | m5], [-1, 1], default=0)
print (df)
Data Col Normalised Col1
0 82 -1
1 41 -1
2 47 1
3 98 -1
4 72 -1
5 34 -1
6 39 1
7 25 1
8 22 1
9 26 1