比较布尔值的两个数据框列

时间:2019-07-16 03:52:06

标签: python pandas dataframe

我有两个数据帧,每个数据帧分别表示实际降雨和预测的降雨情况。实际降雨数据帧是恒定的,因为这是已知结果。预测的降雨数据帧如下所示。

actul = 

index  rain
Day1   True
Day2   False
Day3   True
Day4   True

预测的降雨数据帧如下。该数据框会根据使用的预测模型不断变化。

prdt = 

index  rain
Day1   False
Day2   True
Day3   True
Day4   False

我正在开发上述预测模型的预测精度,如下所示:

#Following computes the number days on which raining was predicted correctly        
a = sum(np.where(((actul['rain'] == True)&(prdt['rain']==True)),True,False))  
#Following computes the number days on which no-rain was predicted correctly    
b = sum(np.where(((actul['rain'] == False)&(prdt['rain']==False)),True,False))
#Following computes the number days on which raining was incorrectly predicted 
c = sum(np.where(((actul['rain'] == True)&(prdt['rain']==False)),True,False))
#Following computes the number days on which no-rain was incorrectly predicted     
d = sum(np.where(((actul['rain'] == False)&(prdt['rain']==True)),True,False))

predt_per =  (a+b)*100/(a+b+c+d)

我上面的代码花费太多时间来计算。有没有更好的方法来达到上述效果?

现在,下面接受的答案解决了我上面的问题。在下面给出的代码中似乎出了点问题,因为我得到所有数据帧的100%预测百分比。我的代码是:

alldates_df = 

index       met1_r2    useful     met1_r2>0.5
0          0.824113     True        True
1          0.903828     True        True
2          0.500765     True        True
3          0.889757     True        True
4          0.890102     True        True
5          0.893995     True        True
6          0.933482     True        True
7          0.872847     True        True
8          0.913142     True        True
9          0.901424     True        True
10         0.910941     True        True
11         0.927310     True        True
12         0.934538     True        True
13         0.946092     True        True
14         0.653831     True        True
15         0.390702     True        False
16         0.878493     True        True
17         0.899739     True        True
18         0.938481     True        True
19      -850.978703     False       False
20       -21.802518     False       False

met1_detacu = [] # Method1_detection accuracy at various settings
var_flset = np.arange(-5,1,0.01) # various filter settings
for i in var_flset:
    pdt_usefl =  alldates_df.assign(result=alldates_df['met1_r2']>i)
    x = pd.concat([alldates_df['useful'],pdt_usefl['result']],axis=1).sum(1).isin([0,2]).mean()*100
    met1_detacu.append(x)
plt.plot(var_flset,met1_detacu)

我上面的代码可以正常工作,但是我得到了,但是我得到了所有100%的所有varible filter settings检测精度。这里不对劲。 获得的情节: enter image description here

预期的地块是:

enter image description here

@WeNYoBen

1 个答案:

答案 0 :(得分:1)

在您的情况下,假设索引是df的索引,因此我们可以在sum之后使用concat,因为True + True == 2和False + False == 0

pd.concat([df1,df2],axis=1).sum(1).isin([0,2]).mean()*100
25.0

更新

met1_detacu = [] # Method1_detection accuracy at various settings
var_flset = np.arange(-5,1,0.01) # various filter settings
for i in var_flset:
    pdt_usefl =  alldates_df.assign(result=alldates_df['met1_r2']>i)
    x = pd.concat([alldates_df['useful'],pdt_usefl['result']],axis=1).sum(1).isin([0,2]).mean()*100
    met1_detacu.append(x)
plt.plot(var_flset,met1_detacu)