我有两个数据帧,每个数据帧分别表示实际降雨和预测的降雨情况。实际降雨数据帧是恒定的,因为这是已知结果。预测的降雨数据帧如下所示。
actul =
index rain
Day1 True
Day2 False
Day3 True
Day4 True
预测的降雨数据帧如下。该数据框会根据使用的预测模型不断变化。
prdt =
index rain
Day1 False
Day2 True
Day3 True
Day4 False
我正在开发上述预测模型的预测精度,如下所示:
#Following computes the number days on which raining was predicted correctly
a = sum(np.where(((actul['rain'] == True)&(prdt['rain']==True)),True,False))
#Following computes the number days on which no-rain was predicted correctly
b = sum(np.where(((actul['rain'] == False)&(prdt['rain']==False)),True,False))
#Following computes the number days on which raining was incorrectly predicted
c = sum(np.where(((actul['rain'] == True)&(prdt['rain']==False)),True,False))
#Following computes the number days on which no-rain was incorrectly predicted
d = sum(np.where(((actul['rain'] == False)&(prdt['rain']==True)),True,False))
predt_per = (a+b)*100/(a+b+c+d)
我上面的代码花费太多时间来计算。有没有更好的方法来达到上述效果?
现在,下面接受的答案解决了我上面的问题。在下面给出的代码中似乎出了点问题,因为我得到所有数据帧的100%
预测百分比。我的代码是:
alldates_df =
index met1_r2 useful met1_r2>0.5
0 0.824113 True True
1 0.903828 True True
2 0.500765 True True
3 0.889757 True True
4 0.890102 True True
5 0.893995 True True
6 0.933482 True True
7 0.872847 True True
8 0.913142 True True
9 0.901424 True True
10 0.910941 True True
11 0.927310 True True
12 0.934538 True True
13 0.946092 True True
14 0.653831 True True
15 0.390702 True False
16 0.878493 True True
17 0.899739 True True
18 0.938481 True True
19 -850.978703 False False
20 -21.802518 False False
met1_detacu = [] # Method1_detection accuracy at various settings
var_flset = np.arange(-5,1,0.01) # various filter settings
for i in var_flset:
pdt_usefl = alldates_df.assign(result=alldates_df['met1_r2']>i)
x = pd.concat([alldates_df['useful'],pdt_usefl['result']],axis=1).sum(1).isin([0,2]).mean()*100
met1_detacu.append(x)
plt.plot(var_flset,met1_detacu)
我上面的代码可以正常工作,但是我得到了,但是我得到了所有100%
的所有varible filter settings
检测精度。这里不对劲。
获得的情节:
预期的地块是:
@WeNYoBen
答案 0 :(得分:1)
在您的情况下,假设索引是df的索引,因此我们可以在sum
之后使用concat
,因为True + True == 2和False + False == 0
pd.concat([df1,df2],axis=1).sum(1).isin([0,2]).mean()*100
25.0
更新
met1_detacu = [] # Method1_detection accuracy at various settings
var_flset = np.arange(-5,1,0.01) # various filter settings
for i in var_flset:
pdt_usefl = alldates_df.assign(result=alldates_df['met1_r2']>i)
x = pd.concat([alldates_df['useful'],pdt_usefl['result']],axis=1).sum(1).isin([0,2]).mean()*100
met1_detacu.append(x)
plt.plot(var_flset,met1_detacu)