我有以下JSON对象:
{
"user_id": "123",
"data": {
"city": "New York"
},
"timestamp": "1563188698.31",
"session_id": "6a793439-6535-4162-b333-647a6761636b"
}
{
"user_id": "123",
"data": {
"name": "some_name",
"age": "23",
"occupation": "teacher"
},
"timestamp": "1563188698.31",
"session_id": "6a793439-6535-4162-b333-647a6761636b"
}
我正在使用val df = sqlContext.read.json("json")
将文件读取到数据框
将所有数据属性组合到数据结构中,如下所示:
root
|-- data: struct (nullable = true)
| |-- age: string (nullable = true)
| |-- city: string (nullable = true)
| |-- name: string (nullable = true)
| |-- occupation: string (nullable = true)
|-- session_id: string (nullable = true)
|-- timestamp: string (nullable = true)
|-- user_id: string (nullable = true)
是否可以将数据字段转换为MAP [String,String]数据类型?因此,它只具有与原始json相同的属性?
答案 0 :(得分:2)
是的,您可以通过从JSON数据中导出Map [String,String]来实现这一目标,如下所示:
import org.apache.spark.sql.types.{MapType, StringType}
import org.apache.spark.sql.functions.{to_json, from_json}
val jsonStr = """{
"user_id": "123",
"data": {
"name": "some_name",
"age": "23",
"occupation": "teacher"
},
"timestamp": "1563188698.31",
"session_id": "6a793439-6535-4162-b333-647a6761636b"
}"""
val df = spark.read.json(Seq(jsonStr).toDS)
val mappingSchema = MapType(StringType, StringType)
df.select(from_json(to_json($"data"), mappingSchema).as("map_data"))
//Output
// +-----------------------------------------------------+
// |map_data |
// +-----------------------------------------------------+
// |[age -> 23, name -> some_name, occupation -> teacher]|
// +-----------------------------------------------------+
首先,我们将data
字段的内容提取为带有to_json($"data")
的字符串,然后解析并提取出带有from_json(to_json($"data"), schema)
的Map。
答案 1 :(得分:0)
如果您打算转换JSON To parque
,则以下操作可能会起作用。
sqlContext.read.json("json").write.option("mode", "overwrite").parquet("/path/to/parquet/file")
答案 2 :(得分:0)
不确定将其转换为(String,String)的映射的意思,但是请查看下面的内容是否有帮助。
val dataDF = spark.read.option("multiline","true").json("madhu/user.json").select("data").toDF
dataDF
.withColumn("age", $"data"("age")).withColumn("city", $"data"("city"))
.withColumn("name", $"data"("name"))
.withColumn("occupation", $"data"("occupation"))
.drop("data")
.show