如何在dplyr中定义函数? -添加卡方检验的结果

时间:2019-07-15 04:57:11

标签: r function dplyr chi-squared statistical-test

我正在尝试编写一个函数来为我提供两个变量的数据透视表。扩展我的问题here,我还要包括卡方检验的p值,以了解预测变量和目标变量之间的关系。我应该如何更改功能?

library(dplyr)
mean_mpg <- mean(mtcars$mpg)

# creating a new variable that shows that Miles/(US) gallon is greater than the mean or not

mtcars <-
mtcars %>%
  mutate(mpg_cat = ifelse(mpg > mean_mpg, 1,0))

mtcars %>%
  group_by(as.factor(cyl)) %>%
  summarise(sum=sum(mpg_cat),total=n()) %>%
  mutate(percentage=sum*100/total)

# Note: needs installation of rlang 0.4.0 or later
get_pivot <- function(data, predictor,target) {
  result <-
    data %>%
    group_by(as.factor( {{ predictor }} )) %>%
    summarise(sum=sum( {{ target }} ),total=n()) %>%
    mutate(percentage=sum*100/total);

  print(result)
}

这是我的工作示例:

mtcars %>%
  group_by(as.factor(cyl)) %>%
  summarise(sum=sum(mpg_cat),total=n(),
            pvalue= chisq.test(as.factor(.$mpg_cat), as.factor(.$cyl))$p.value) %>% 
  mutate(percentage=sum*100/total)

我尝试了以下功能,但没有起作用。

get_pivot <- function(data, predictor,target) {
  result <-
    data %>%
    group_by( {{ predictor }} ) %>%
    summarise(clicks=sum( {{ target }} ),total=n(),
              pvalue= chisq.test(.$target, .$predictor)$p.value) %>%
    mutate(percentage=clicks*100/total);

  print(result)
}

1 个答案:

答案 0 :(得分:2)

{{...}}卷发插值运算符是取消引用的便捷方法。但是,这并非在所有情况下都有效。在OP的功能中,使用$提取一列,即。 .$target.$predictor部分无效。相反,我们可以将其转换为characteras_name),然后使用[[

提取列
library(rlang)
library(dplyr)

get_pivot <- function(data, predictor,target) {

     data %>%
     group_by( {{ predictor }} ) %>%
     summarise(clicks=sum( {{ target }} ),total=n(),
               pvalue= chisq.test(.[[as_name(enquo(target))]], 
                       .[[as_name(enquo(predictor))]])$p.value) %>%
     mutate(percentage=clicks*100/total);


 }

get_pivot(mtcars, cyl, mpg_cat)
# A tibble: 3 x 5
#    cyl clicks total     pvalue percentage
#  <dbl>  <dbl> <int>      <dbl>      <dbl>
#1     4     11    11 0.00000366      100  
#2     6      3     7 0.00000366       42.9
#3     8      0    14 0.00000366        0