我试图了解注意力模型,并自己建立一个。经过多次搜索,我遇到了this website,它有一个用keras编码的衰减模型,看起来也很简单。但是,当我尝试在自己的机器上构建相同的模型时,会出现多个参数错误。该错误是由于在类Attention
中传递了不匹配的参数所致。在网站的关注类中,它要求一个参数,但它会使用两个参数来启动关注对象。
import tensorflow as tf
max_len = 200
rnn_cell_size = 128
vocab_size=250
class Attention(tf.keras.Model):
def __init__(self, units):
super(Attention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, features, hidden):
hidden_with_time_axis = tf.expand_dims(hidden, 1)
score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
attention_weights = tf.nn.softmax(self.V(score), axis=1)
context_vector = attention_weights * features
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
sequence_input = tf.keras.layers.Input(shape=(max_len,), dtype='int32')
embedded_sequences = tf.keras.layers.Embedding(vocab_size, 128, input_length=max_len)(sequence_input)
lstm = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM
(rnn_cell_size,
dropout=0.3,
return_sequences=True,
return_state=True,
recurrent_activation='relu',
recurrent_initializer='glorot_uniform'), name="bi_lstm_0")(embedded_sequences)
lstm, forward_h, forward_c, backward_h, backward_c = tf.keras.layers.Bidirectional \
(tf.keras.layers.LSTM
(rnn_cell_size,
dropout=0.2,
return_sequences=True,
return_state=True,
recurrent_activation='relu',
recurrent_initializer='glorot_uniform'))(lstm)
state_h = tf.keras.layers.Concatenate()([forward_h, backward_h])
state_c = tf.keras.layers.Concatenate()([forward_c, backward_c])
# PROBLEM IN THIS LINE
context_vector, attention_weights = Attention(lstm, state_h)
output = keras.layers.Dense(1, activation='sigmoid')(context_vector)
model = keras.Model(inputs=sequence_input, outputs=output)
# summarize layers
print(model.summary())
如何使该模型正常工作?
答案 0 :(得分:8)
注意层现在是Tensorflow(2.1)的Keras API的一部分。但是它输出的张量与“查询”张量相同。
这是使用Luong风格的注意力的方法:
query_attention = tf.keras.layers.Attention()([query, value])
还有Bahdanau风格的关注:
query_attention = tf.keras.layers.AdditiveAttention()([query, value])
改编版本:
attention_weights = tf.keras.layers.Attention()([lstm, state_h])
请访问原始网站以获取更多信息:https://www.tensorflow.org/api_docs/python/tf/keras/layers/Attention https://www.tensorflow.org/api_docs/python/tf/keras/layers/AdditiveAttention
答案 1 :(得分:1)
初始化attention layer
和传递参数的方式存在问题。您应该在该位置指定attention layer
单位的数量,并修改参数的传递方式:
context_vector, attention_weights = Attention(32)(lstm, state_h)
结果:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 200) 0
__________________________________________________________________________________________________
embedding (Embedding) (None, 200, 128) 32000 input_1[0][0]
__________________________________________________________________________________________________
bi_lstm_0 (Bidirectional) [(None, 200, 256), ( 263168 embedding[0][0]
__________________________________________________________________________________________________
bidirectional (Bidirectional) [(None, 200, 256), ( 394240 bi_lstm_0[0][0]
bi_lstm_0[0][1]
bi_lstm_0[0][2]
bi_lstm_0[0][3]
bi_lstm_0[0][4]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 256) 0 bidirectional[0][1]
bidirectional[0][3]
__________________________________________________________________________________________________
attention (Attention) [(None, 256), (None, 16481 bidirectional[0][0]
concatenate[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 1) 257 attention[0][0]
==================================================================================================
Total params: 706,146
Trainable params: 706,146
Non-trainable params: 0
__________________________________________________________________________________________________
None
答案 2 :(得分:0)
为回答Arman的特定查询-这些库使用2018年后的查询,值和键的语义。要将语义映射回Bahdanau或Luong的论文,可以将“查询”视为最后一个解码器隐藏状态。 “值”将是编码器输出的集合-编码器的所有隐藏状态。 “查询”“参与”所有“值”。
无论使用哪种版本的代码或库,请始终注意,“查询”将在时间轴上展开,以为随后的后续添加做准备。该值(正在扩展)将始终是RNN的最后一个隐藏状态。另一个值将始终是需要注意的值-编码器端的所有隐藏状态。可以通过对代码的这种简单检查来确定映射到哪个“查询”和“值”,而与所使用的库或代码无关。
您可以参考https://towardsdatascience.com/create-your-own-custom-attention-layer-understand-all-flavours-2201b5e8be9e以少于6行的代码编写自己的自定义注意层