我正在尝试训练模型,并且从不通过fit()
。
在控制台中未显示丢失结果,它卡在那里。
已经将异步更改为一个承诺,但这是相同的。
要查看完整的代码,请单击here!
function train() {
trainModel().then(result => {
console.log(result.history.loss[0]);
setTimeout(train, 100);
});
}
// entrena modelo〜params = train_xs(输入)y train_ys(输出)
async function trainModel() {
//Create the input data
for (let i = 0; i < 5; i++) {
train_xs = tf.tensor2d(ins.pixels[i], [28, 28], 'int32');
train_ys = tf.tensor2d(outs.coords[i], [3, 2], 'int32');
const h = await model.fit(train_xs, train_ys, {
epochs: 1
});
console.log("Loss after Epoch " + i + " : " + h.history.loss[0]);
}
console.log('end fitness model');
}
//从不显示最终健身模型
没有错误消息,控制台保持简洁
答案 0 :(得分:0)
有两个问题(控制台很干净,因为它没有注销错误):
xs和ys的形状与model.ins.pixels[i]
xs和ys的批次大小应相同。由于在for循环的所有迭代中,仅使用一个功能和一个标签,因此batchsize为1。
这是模型的修正
let model;
let xs;
let train_xs;
let train_ys;
let inAndOut;
let resolution = 20;
let cols;
let rows;
var ins;
var outs;
function setup() {
createCanvas(400, 400);
/// visualization
ins = new Inputs13(); // ins.pixels;
outs = new Outputs13(); // outs.coords;
inAndOut = new InputsAndOutputsToTest();
///crear modelo
model = tf.sequential();
let hidden = tf.layers.dense({
inputShape: [784],
units: 28,
activation: 'sigmoid'
});
let output = tf.layers.dense({
units: 6,
activation: 'sigmoid'
});
model.add(hidden);
model.add(output);
const optimizer = tf.train.adam(0.1);
model.compile({
optimizer: optimizer,
loss: 'meanSquaredError'
})
xs = tf.tensor2d(inAndOut.pixelsToTest[0],[28,28]);
//console.log('xs');
//console.log(xs);
//xs.print();
//entrena modelo
setTimeout(train, 10);
}
//promesa, llama a entrenar modelo y muestra de losss
function train() {
console.log("im in train!");
trainModel().then(result => {
console.log(result.history.loss[0]);
setTimeout(train, 100);
});
}
// entrena modelo~ params = train_xs(input) y train_ys(output)
async function trainModel() {
let h;
//Create the input data
for (let i = 0; i < 5; i++) {
train_xs = tf.tensor(ins.pixels[i], [1, 784]); //[tens], [shape]
console.log('xs.shape', train_xs.shape)
train_ys = tf.tensor(outs.coords[i]).reshape([1, 6]);
console.log('ys.shape', train_ys.shape)
/* console.log('train_xs');
train_xs.print();
console.log("train_ys");
train_ys.print();*/
h = await model.fit(train_xs, train_ys, {
// shuffle: true,
epochs: 1
});
console.log("Loss after Epoch " + i + " : " + h.history.loss[0]);
}
console.log('end fitness model');
return h;
}
//muestra visual!
function draw() {
background(220);
//Get the predictions params xs = inputs para pruebas
tf.tidy(() => {
let ys = model.predict(xs);
//console.log("ys");
//console.log(ys);
let y_values = ys.dataSync();
// console.log("y_values");
// console.log(y_values);
});
}
但是,可以同时使用所有13个功能和13个标签。 for循环将不再有用。
train_xs = tf.tensor(ins.pixels, [13, 784]);
console.log('xs.shape', train_xs.shape)
train_ys = tf.tensor(outs.coords).reshape([13, 6]);