我在TensorFlow的Keras中实现了3D CNN
,在此之前效果很好。现在,为了加快在多个GPU上的培训,我想尝试将MXNet
与Keras
一起使用。我希望除了“ {channels_last
”到“ channels_first”问题外,无需更改很多代码,但是该程序在Conv3D操作时崩溃。
是keras.json文件,因此应将其设置为可以正常运行:
{
"backend": "mxnet",
"image_data_format": "channels_first",
"epsilon": 1e-07,
"floatx": "float32"
}
这是显示错误的一小部分:
from keras.models import *
from keras.layers import *
from keras.optimizers import *
def SimpleInceptionBlock(input, num_kernels, kernel_init='he_normal', padding='same', bn_axis=1):
tower1 = Conv3D(num_kernels, 1, padding=padding, kernel_initializer=kernel_init)(input)
tower1 = BatchNormalization()(tower1)
tower1 = ELU()(tower1)
tower2 = MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding=padding)(input)
tower2 = Conv3D(num_kernels, 1, padding=padding, kernel_initializer=kernel_init)(tower2)
tower2 = BatchNormalization()(tower2)
tower2 = ELU()(tower2)
output = concatenate([tower1, tower2], axis=bn_axis)
return output
def TestNet(input_size=(1,64,64,64), num_class=7):
bn_axis = 1
img_input = Input(shape=input_size)
filter1 = SimpleInceptionBlock(img_input, 16)
# this runs fine, filter1.shape = (None, 32, 64, 64, 64)
filter2 = SimpleInceptionBlock(filter1, 16)
output = Conv3D(num_class, (1, 1, 1), activation='softmax', kernel_initializer = kernel_init, padding='same', kernel_regularizer=l2(1e-4))(filter2)
model = Model(input=img_input, output=output)
return model
model = TestNet()
“ SimpleInceptionBlock
”的第一个调用运行正常,与预期的filter1.shape = (None, 32, 64, 64)
相同,但是第二个调用会产生错误消息:
操作符concat0中的错误:[15:40:58] C:\ Jenkins \ workspace \ mxnet-tag \ mxnet \ src \ operator \ nn \ concat.cc:66: 检查失败:shape_assign(&(* in_shape)[i],dshape)输入不兼容 形状:预期[0,0,64,64,64],得到[0,16,64,65,65]