我有一个数据框,其中数据按ID分组。我需要知道每个组中10%的单元格是多少,以便在样本中选择此数字,但是此样本应选择EP为1的单元格。
我尝试做一个嵌套的For循环:一个是要知道每个组的单元格数量为10%,另一个是要采样的数量更大的单元格,以满足条件EP == 1
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
x
ID EP
1 1 0
2 1 1
3 1 0
4 1 1
5 1 0
6 1 1
7 1 0
8 1 1
9 1 0
10 1 1
11 2 0
12 2 1
13 2 0
14 2 1
15 2 0
16 2 1
17 2 0
18 2 1
19 2 0
20 2 1
for(j in 1:1000){
for (i in 1:nrow(x)){
d <- x[x$ID==i,]
npix <- 10*nrow(d)/100
}
r <- sample(d[d$EP==1,],npix)
print(r)
}
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
.
.
.
until 1000
我想获取此数据帧,其中每个样本都位于x的新列中,并且所采样的单元格为“ 1”:
ID EP s1 s2....s1000
1 1 0 0 0 ....
2 1 1 0 1
3 1 0 0 0
4 1 1 0 0
5 1 0 0 0
6 1 1 0 0
7 1 0 0 0
8 1 1 0 0
9 1 0 0 0
10 1 1 1 0
11 2 0 0 0
12 2 1 0 0
13 2 0 0 0
14 2 1 0 1
15 2 0 0 0
16 2 1 0 0
17 2 0 0 0
18 2 1 1 0
19 2 0 0 0
20 2 1 0 0
看到S1和s2中的每个1是被采样的细胞,并且对应于满足条件EP == 1的每组(1、2)中10%的细胞。
答案 0 :(得分:2)
您可以尝试
set.seed(1231)
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
library(tidyverse)
x %>%
group_by(ID) %>%
mutate(index= ifelse(EP==1, 1:n(),0)) %>%
mutate(s1 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0)) %>%
mutate(s2 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0))
# A tibble: 20 x 5
# Groups: ID [2]
ID EP index s1 s2
<int> <int> <dbl> <dbl> <dbl>
1 1 0 0 0 0
2 1 1 2 0 0
3 1 0 0 0 0
4 1 1 4 0 0
5 1 0 0 0 0
6 1 1 6 1 1
7 1 0 0 0 0
8 1 1 8 0 0
9 1 0 0 0 0
10 1 1 10 0 0
11 2 0 0 0 0
12 2 1 2 0 0
13 2 0 0 0 0
14 2 1 4 0 1
15 2 0 0 0 0
16 2 1 6 0 0
17 2 0 0 0 0
18 2 1 8 0 0
19 2 0 0 0 0
20 2 1 10 1 0
答案 1 :(得分:1)
我们可以编写一个函数,为每个ID
给我们1,即10%,并将其放在EP = 1
处。
library(dplyr)
rep_func <- function() {
x %>%
group_by(ID) %>%
mutate(s1 = 0,
s1 = replace(s1, sample(which(EP == 1), floor(0.1 * n())), 1)) %>%
pull(s1)
}
然后使用replicate
重复n
次
n <- 5
x[paste0("s", seq_len(n))] <- replicate(n, rep_func())
x
# ID EP s1 s2 s3 s4 s5
#1 1 0 0 0 0 0 0
#2 1 1 0 0 0 0 0
#3 1 0 0 0 0 0 0
#4 1 1 0 0 0 0 0
#5 1 0 0 0 0 0 0
#6 1 1 1 0 0 1 0
#7 1 0 0 0 0 0 0
#8 1 1 0 1 0 0 0
#9 1 0 0 0 0 0 0
#10 1 1 0 0 1 0 1
#11 2 0 0 0 0 0 0
#12 2 1 0 0 1 0 0
#13 2 0 0 0 0 0 0
#14 2 1 1 1 0 0 0
#15 2 0 0 0 0 0 0
#16 2 1 0 0 0 0 1
#17 2 0 0 0 0 0 0
#18 2 1 0 0 0 1 0
#19 2 0 0 0 0 0 0
#20 2 1 0 0 0 0 0