已给我2个不同的2D数组,并要求我计算数组x的行和数组y的行之间的L2距离。数组x的形状为(M,D),数组y的形状为(N,D)。最终答案数组的形状应为(M,N)。
我不太擅长python。我真的只是在做随机的事情,看看会发生什么。
import numpy as np
def compute_distances(x, y):
""" Write a function that computes the L2 distance between each row
in `x` and `y`.
Parameters
----------
x : numpy.ndarray
x.shape must be (M, D)
Each row of `x` is a flattened vector representing the pixel
values of a single image. Thus `x` represents
M images, each one described by a length-D vector.
y : numpy.ndarray
y.shape must be (N, D)
Each row of `y` is a flattened vector representing the pixel
values of a single image. Thus `y` represents
N images, each one described by a length-D vector.
Returns
-------
distances : numpy.ndarray
distances.shape = (M, N)
distances[i, j] = the L2 distance between x[i] and y[j]
"""
# student code goes here
M = x.shape[0]
N = y.shape[0]
dists = np.array (M, N)
dists[i, j] = np.sqrt(np.sum(np.square(x.shape[0] - y.shape[0]), axis = 0))
pass
答案 0 :(得分:1)
我喜欢这个,因为它适用于1、2和3D阵列
def e_dist(a, b, metric='euclidean'):
"""Distance calculation for 1D, 2D and 3D points using einsum
preprocessing :
use `_view_`, `_new_view_` or `_reshape_` with structured/recarrays
Parameters
----------
a, b : array like
Inputs, list, tuple, array in 1, 2 or 3D form
metric : string
euclidean ('e', 'eu'...), sqeuclidean ('s', 'sq'...),
Notes
-----
mini e_dist for 2d points array and a single point
>>> def e_2d(a, p):
diff = a - p[np.newaxis, :] # a and p are ndarrays
return np.sqrt(np.einsum('ij,ij->i', diff, diff))
See Also
--------
cartesian_dist : function
Produces pairs of x,y coordinates and the distance, without duplicates.
"""
a = np.asarray(a)
b = np.atleast_2d(b)
a_dim = a.ndim
b_dim = b.ndim
if a_dim == 1:
a = a.reshape(1, 1, a.shape[0])
if a_dim >= 2:
a = a.reshape(np.prod(a.shape[:-1]), 1, a.shape[-1])
if b_dim > 2:
b = b.reshape(np.prod(b.shape[:-1]), b.shape[-1])
diff = a - b
dist_arr = np.einsum('ijk,ijk->ij', diff, diff)
if metric[:1] == 'e':
dist_arr = np.sqrt(dist_arr)
dist_arr = np.squeeze(dist_arr)
return dist_arr
屈服
a = np.random.rand(3, 2)
b = np.random.rand(5, 2)
e_dist(a, b)
array([[0.62, 0.45, 0.88, 0.7 , 0.33],
[0.46, 0.57, 0.47, 0.25, 0.4 ],
[0.94, 0.68, 0.16, 0.35, 0.62]])
还有...
a = np.random.rand(2, 3, 2)
b = np.random.rand(2, 5, 2)
e_dist(a, b)
array([[0.72, 0.39, 0.89, 0.25, 0.29, 0.41, 0.31, 0.6 , 0.8 , 0.39],
[0.25, 0.26, 0.69, 0.45, 0.45, 0.63, 0.57, 0.39, 0.25, 0.78],
[0.28, 0.27, 0.74, 0.47, 0.46, 0.69, 0.62, 0.45, 0.25, 0.84],
[0.43, 0.48, 0.47, 0.52, 0.54, 0.2 , 0.17, 0.21, 0.55, 0.38],
[0.15, 0.36, 0.54, 0.51, 0.52, 0.52, 0.48, 0.23, 0.23, 0.69],
[0.87, 0.76, 0.78, 0.67, 0.71, 0.26, 0.28, 0.64, 0.99, 0.06]])
并比较2d的numpy和scipy变体
from scipy.spatial import distance_matrix
distance_matrix(a, b)
array([[0.87, 0.89, 0.91, 0.07, 0.68, 0.95, 0.89],
[0.78, 0.52, 0.28, 0.85, 0.22, 0.65, 0.51],
[0.75, 0.46, 0.51, 1.08, 0.5 , 0.57, 0.45]])
e_dist(a, b)
array([[0.87, 0.89, 0.91, 0.07, 0.68, 0.95, 0.89],
[0.78, 0.52, 0.28, 0.85, 0.22, 0.65, 0.51],
[0.75, 0.46, 0.51, 1.08, 0.5 , 0.57, 0.45]])
因此,有很多选择,具体取决于您使用的阵列的大小。