我正在使用google和stackoverflow,但没有解决办法。
我可能错过了太小的东西。预先感谢您的帮助。
我分享了下面的代码。我正在为最近的k个邻居算法编写代码。
TypeError:“元组”对象不可调用
import sklearn
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
data = pd.read_csv("car.data")
print(data.head())
le = preprocessing.LabelEncoder()
buying = le.fit_transform(list(data["buying"]))
maint = le.fit_transform(list(data["maint"]))
door = le.fit_transform(list(data["door"]))
persons = le.fit_transform(list(data["persons"]))
lug_boot = le.fit_transform(list(data["lug_boot"]))
safety = le.fit_transform(list(data["safety"]))
cls = le.fit_transform(list(data["class"]))
predict = "class"
X = list(zip(buying, maint, door, persons, lug_boot, safety))
y = list (cls)
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size = 0.1)
model = KNeighborsClassifier(n_neighbors = 9)
model.fit(x_train,y_train)
acc = model.score(x_test,y_test)
print(acc)
predicted = model.predict(x_test)
names = ["unacc", "acc", "good", "vgood"]
for x in range(len(predicted)):
print("Predicted: ", names[predicted[x]], "Data: ", x_test[x], "Actual: ", names[y_test[x]])
n = model.kneighbors([x_test[x]], 9, True)
print("N: ", n)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-9-24745253027e> in <module>
3
4 for x in range(len(predicted)):
----> 5 print("Predicted: ", names[predicted[x]], "Data: ", x_test[x], "Actual: ", names[y_test[x]])
6 n = model.kneighbors([x_test[x]], 9, True)
7 print("N: ", n)
TypeError: 'tuple' object is not callable