如何有效导出使用.CSV或python中的.XLSX文件中的pyspark生成的关联规则

时间:2019-07-02 03:34:44

标签: pyspark python-3.6 fpgrowth

解决此问题后: How to limit FPGrowth itemesets to just 2 or 3 我正在尝试使用pyspark将fpgrowth的关联规则输出导出到python中的.csv文件。在运行了将近8-10个小时后,它给出了一个错误。 我的机器有足够的空间和内存。

    Association Rule output is like this:

    Antecedent           Consequent      Lift
    ['A','B']              ['C']           1

代码在链接中: How to limit FPGrowth itemesets to just 2 or 3 只需再添加一行

    ar = ar.coalesce(24)
    ar.write.csv('/output', header=True)

使用的配置:

 ``` conf = SparkConf().setAppName("App")
     conf = (conf.setMaster('local[*]')
    .set('spark.executor.memory', '200G')
    .set('spark.driver.memory', '700G')
    .set('spark.driver.maxResultSize', '400G')) #8,45,10
    sc = SparkContext.getOrCreate(conf=conf)
  spark = SparkSession(sc)

这将继续运行,并消耗了1000GB的C:/驱动器

有什么有效的方法可以将输出保存为.CSV格式或.XLSX格式。

错误是:

  ```The error is:

   Py4JJavaError: An error occurred while calling o207.csv.
   org.apache.spark.SparkException: Job aborted.at 
   org.apache.spark.sql.execution.
   datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)

   atorg.apache.spark.sql.execution.datasources.InsertIntoHadoopFs
   RelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
   at 
   org.apache.spark.sql.execution.command.
  DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
  at org.apache.spark.sql.execution.command.
  DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:664)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 10 in stage 9.0 failed 1 times, most recent failure: Lost task 10.0 in stage 9.0 (TID 226, localhost, executor driver): java.io.IOException: There is not enough space on the disk
at java.io.FileOutputStream.writeBytes(Native Method)



     The progress:
     19/07/15 14:12:32 WARN TaskSetManager: Stage 1 contains a task of very large size (26033 KB). The maximum recommended task size is 100 KB.
     19/07/15 14:12:33 WARN TaskSetManager: Stage 2 contains a task of very large size (26033 KB). The maximum recommended task size is 100 KB.
     19/07/15 14:12:38 WARN TaskSetManager: Stage 4 contains a task of very large size (26033 KB). The maximum recommended task size is 100 KB.
     [Stage 5:>                (0 + 24) / 24][Stage 6:>                 (0 + 0) / 24][I 14:14:02.723 NotebookApp] Saving file at /app1.ipynb
     [Stage 5:==>              (4 + 20) / 24][Stage 6:===>              (4 + 4) / 24]

1 个答案:

答案 0 :(得分:1)

就像注释中已经提到的那样,您应该尝试避免toPandas(),因为此函数会将所有数据加载到驱动程序。您可以使用pysparks DataFrameWriter来写出数据,但是由于不支持数组,因此必须将数组列(先行和后续)转换为其他格式,然后才能将数据写到csv。将列转换为受支持的类型(例如字符串)的一种方法是concat_ws

object

输出:

long

您现在可以将数据写入csv:

item["Card_Name"]  = data.xpath(".//td[2]/a/text()").get()

这将为每个分区创建一个csv文件。您可以使用以下方法更改分区数:

import pyspark.sql.functions as F
from pyspark.ml.fpm import FPGrowth

df = spark.createDataFrame([
    (0, [1, 2, 5]),
    (1, [1, 2, 3, 5]),
    (2, [1, 2])
], ["id", "items"])

fpGrowth = FPGrowth(itemsCol="items", minSupport=0.5, minConfidence=0.6)
model = fpGrowth.fit(df)
ar=model.associationRules.withColumn('antecedent', F.concat_ws('-', F.col("antecedent").cast("array<string>")))\
                         .withColumn('consequent', F.concat_ws('-', F.col("consequent").cast("array<string>")))
ar.show()

如果由于内存问题导致spark无法写入csv文件,请尝试使用不同数量的分区(在调用ar.write之前),并在必要时用其他工具合并这些文件。