我正在解决一个问题,该问题需要列出油漆颜色并让用户输入颜色名称。如果它们匹配,则表示在列表中找到了颜色。否则它说找不到。如果用于用户输入,则使用列表中的第一个值,它告诉我已找到它;但是,对于所有其他颜色,它会给出未找到的消息。
我检查了油漆颜色列表和输入变量之间是否存在任何变量差异,更改了变量名称,尝试将输入转换为上下。
paint_colors = ['black', 'blue', 'green', 'white', 'yellow']
color_request = input("Enter color name: ")
for color in paint_colors:
if color_request.lower() == color:
print("Color exists in list!")
break
else:
print("Color is not in the list!")
break
我希望通过在输入框中输入“白色”或“白色”一词,它会告诉我找到了它,但是返回它的唯一方法是用黑色填充。
答案 0 :(得分:1)
第二个break
是多余的,因为当颜色与第一个索引不匹配时,您将过早地退出循环:
paint_colors = ['black', 'blue', 'green', 'white', 'yellow']
color_request = input("Enter color name: ")
for color in paint_colors:
if color_request.lower() == color:
print("Color exists in list!")
break
else:
print("Color is not in the list!")
答案 1 :(得分:0)
我们可以设置一个标记colour_found
来跟踪我们是否在列表中找到了颜色。如果找到颜色,则可以退出循环。
paint_colors = ['black', 'blue', 'green', 'white', 'yellow']
color_request = input("Enter color name: ")
colour_found = False
for color in paint_colors:
if color_request.lower() == color:
colour_found = True
break
if colour_found:
print("Color exists in list!")
else:
print("Color is not in the list!")
答案 2 :(得分:0)
您的第二个def objective(params, n_folds=2):
"""Objective function for Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
clf = KerasClassifier(build_fn=create_model,**params)
start = timer()
# Perform n_folds cross validation
cv_results = cross_val_score(clf, X, y,
cv=5,
).mean()
run_time = timer() - start
# Loss must be minimized
loss = -cv_results
# Dictionary with information for evaluation
return {
'loss': loss,
'params': params,
'iteration': ITERATION,
'train_time': run_time,
'status': STATUS_OK
}
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
space = {'units1': hp.choice('units1', [12, 64]),
'dropout': hp.choice('dropout1', [0.25, 0.5]),
'batch_size': hp.choice('batch_size', [10, 20]),
'epochs': hp.choice('nb_epochs', [2, 3]),
'activation': 'relu'
}
语句引起了问题。您可以尝试以下方法:
global ITERATION
ITERATION = 0
bayes_trials = Trials()
best = fmin(fn = objective, space = space, algo = tpe.suggest,
max_evals = 5, trials = bayes_trials, rstate = np.random.RandomState(50))
以其他方式使用另一个变量:
import requests
import pandas as pd
import openpyxl
#reading excel column.
export = pd.read_excel('abc.xlsx')
#creating list from column data
taglist = export.values.T[0].tolist()
#setting url
url = 'https://www.somesite.com/support/article/us/en/'
#reading cell by rows and append the string with variable url
#looping through the elements of list and doing html parsing of the html tag
for i in taglist:
r = requests.get(url+i)
r.text[1:500]
from bs4 import BeautifulSoup
soup = BeautifulSoup(r.text, 'html.parser')
#getting Title from html page
df = soup.title.text
frame_data = {df}
df1 = pd.DataFrame(frame_data)
df1.to_excel("pandasExcel.xlsx", "sheet2")
使用break
运算符:
paint_colors = ['black', 'blue', 'green', 'white', 'yellow']
color_request = input("Enter color name: ")
for color in paint_colors:
if color_request.lower() == color:
print("Color exists in list!")
break
else:
print("Color is not in the list!")