使用更快的rcnn_resnet50_fpn在Pytorch中转移学习

时间:2019-06-26 11:28:51

标签: pytorch object-detection transfer-learning faster-rcnn

我正在为PyTorch中的自定义数据集寻找对象检测。

教程here提供了一个片段,用于对自定义对象分类

使用预训练的模型
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                   num_epochs=25)

我尝试使用类似的方法通过更快的rcnn模型进行对象检测

# load a model pre-trained pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
for param in model.parameters():
    param.requires_grad = False
# replace the classifier with a new one, that has
# num_classes which is user-defined
num_classes = 1  # 1 class (person) + background
print(model)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,num_epochs=25)

PyTorch引发这些错误。这种方法首先正确吗?

Epoch 0/24
----------
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-69-527ca4db8e5d> in <module>()
----> 1 model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,num_epochs=25)

2 frames
/usr/local/lib/python3.6/dist-packages/torchvision/models/detection/generalized_rcnn.py in forward(self, images, targets)
     43         """
     44         if self.training and targets is None:
---> 45             raise ValueError("In training mode, targets should be passed")
     46         original_image_sizes = [img.shape[-2:] for img in images]
     47         images, targets = self.transform(images, targets)

ValueError: In training mode, targets should be passed

是否可以修改此示例以进行自定义对象检测? https://www.learnopencv.com/faster-r-cnn-object-detection-with-pytorch/

1 个答案:

答案 0 :(得分:0)

错误消息说明了一切。您需要传递一对image, target来训练模型,target在其中。是一本字典,其中包含有关边界框,标签和蒙版的信息。

有关更多信息和全面的教程,请查看https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html