我有以下数据:
df <- data.frame(numbers = rep(1:3, 30),
letter = sample(c("A", "B", "C", "D"), 90, replace = TRUE),
status = sample(c("good", "bad", "ugly"), 90, replace = TRUE))
我正在尝试复制此ggplot2图,但使其具有交互性:
ggplot(df, aes(letter, fill = status)) + geom_bar() + facet_wrap(.~numbers)
如果我使用ggplotly
,则可以选择和取消选择变量,但是条形图不会重新调整,因此我得到的内容如下:
所以我的想法是转换数据,然后创建单个绘图并使用子图:
df_group <- df %>% group_by(numbers, letter, status) %>% tally()
df_group_cast <- dcast(df_group, numbers + letter ~ status)
p1 <- df_group_cast %>%
filter(numbers == 1) %>%
plot_ly(x = ~letter, y = ~good, type = 'bar', name = 'good') %>%
add_trace(y = ~bad, name = 'bad') %>%
add_trace(y = ~ugly, name = 'ugly') %>%
layout(yaxis = list(title = 'Count'), barmode = 'stack')
p2 <- df_group_cast %>%
filter(numbers == 2) %>%
plot_ly(x = ~letter, y = ~good, type = 'bar', name = 'good') %>%
add_trace(y = ~bad, name = 'bad') %>%
add_trace(y = ~ugly, name = 'ugly') %>%
layout(yaxis = list(title = 'Count'), barmode = 'stack')
p3 <- df_group_cast %>%
filter(numbers == 3) %>%
plot_ly(x = ~letter, y = ~good, type = 'bar', name = 'good') %>%
add_trace(y = ~bad, name = 'bad') %>%
add_trace(y = ~ugly, name = 'ugly') %>%
layout(yaxis = list(title = 'Count'), barmode = 'stack')
subplot(p1, p2, p3)
这是交互式的,但看起来也很糟糕。我希望他们共享一个比例,有一个图例,并对每个数字组都有标题。
这可能吗?
(我想将这样的交互式图形嵌入slidify中,如果有更好的库可以使用它们。到目前为止,rCharts使我失败了,所以我要作图)
答案 0 :(得分:0)
我知道了!不需要最后投放我的数据。我什至还添加了添加子组标题的步骤。
df_group <- df %>% group_by(numbers, letter, status) %>% tally()
将注释文本放在一起以添加到图中:
a <- list(
text = sprintf("<b>1</b>"),
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "center",
x = 0.5,
y = 1,
showarrow = FALSE)
b <- list(
text = sprintf("<b>2</b>"),
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "center",
x = 0.5,
y = 1,
showarrow = FALSE)
c <- list(
text = sprintf("<b>3</b>"),
xref = "paper",
yref = "paper",
yanchor = "bottom",
xanchor = "center",
align = "center",
x = 0.5,
y = 1,
showarrow = FALSE)
将实际图放在一起,请注意布局下的“注释”选项。我也不需要添加所有的废话,按状态着色可以帮我完成工作。
p1 <- df_group %>%
filter(numbers == 1) %>%
group_by(letter) %>%
plot_ly(x = ~letter, y= ~n, color = ~status, type = 'bar', legendgroup = ~status) %>%
layout(barmode = 'stack', annotations = a)
p2 <- df_group %>%
filter(numbers == 2) %>%
group_by(letter) %>%
plot_ly(x = ~letter, y= ~n, color = ~status, type = 'bar', legendgroup = ~status, showlegend = FALSE) %>%
layout(barmode = 'stack', annotations = b)
p3 <- df_group %>%
filter(numbers == 3) %>%
group_by(letter) %>%
plot_ly(x = ~letter, y= ~n, color = ~status, type = 'bar', legendgroup = ~status, showlegend = FALSE) %>%
layout(barmode = 'stack', annotations = c)
绘图:
subplot(p1, p2, p3, shareY = TRUE)
Imgur无法显示交互性,因此您只需要相信它是交互式的,就可以通过单击所有图的标签来选择所有图中的类别。