我有一个data.frame loc_teste2
,其列为:Ptt
(我有36种不同的Ptt)和Date
,如下所示:
Ptt Date
88734 05:39:18 23-Oct-2016
88734 06:53:13 23-Oct-2016
88734 08:32:18 24-Oct-2016
88734 06:45:27 19-Dez-2016
88734 12:30:43 20-Dez-2016
129041 02:45:35 18-Nov-2016
129041 04:55:24 19-Nov-2016
129041 06:45:30 19-Nov-2016
129041 07:10:32 20-Nov-2016
129041 03:43:54 10-Jan-2017
120941 14:54:39 11-Jan-2017
...
因此,我将列Date
拆分为另一列Days
loc_teste2$Date<- as.character(loc_teste2$Date)
loc_teste2$Days <- sapply(strsplit(loc_teste2$Date, split=' ', fixed=TRUE), function(x) (x[2]))
loc_teste2$Days <- as.POSIXct(loc_teste2$Days, format = "%d-%b-%Y",tz = "GMT",usetz = TRUE)
loc_teste2$Date <- as.POSIXct(loc_teste2$Date, format = "%H:%M:%S %d-%b-%Y",tz = "GMT",usetz = TRUE)
返回:
Ptt Date Days
88734 2016-10-23 05:39:18 2016-10-23
88734 2016-10-23 06:53:13 2016-10-23
88734 2016-10-23 08:32:18 2016-10-24
88734 2016-12-19 06:45:27 2016-12-19
88734 2016-12-20 12:30:43 2016-12-20
129041 2016-10-23 02:45:35 2016-10-18
129041 2016-10-23 04:55:24 2016-11-19
129041 2016-10-23 06:45:30 2016-11-19
129041 2016-10-23 07:10:32 2016-11-20
129041 2017-01-10 03:43:54 2017-01-10
120941 2017-01-11 14:54:39 2017-01-11
...
然后,我想创建一个新列Mig
,该列在第一天为Ptt
列中的每个Days
添加40天,其中:
如果日期距离Ptt
的第一天起最多40天,则返回1
如果日期是从Ptt
的第一个日期算起的40天之后,它将返回2
,如下所示:
Ptt Date Days Mig
88734 2016-10-23 05:39:18 2016-10-23 1 #based in this date (the first date for this Ptt)
88734 2016-10-23 06:53:13 2016-10-23 1
88734 2016-10-23 08:32:18 2016-10-24 1
88734 2016-12-19 06:45:27 2016-12-19 2
88734 2016-12-20 12:30:43 2016-12-20 2
129041 2016-10-23 02:45:35 2016-10-18 1 #based in this date (the first date for this Ptt)
129041 2016-10-23 04:55:24 2016-11-19 1
129041 2016-10-23 06:45:30 2016-11-19 1
129041 2016-10-23 07:10:32 2016-11-20 1
129041 2017-01-10 03:43:54 2017-01-10 2
120941 2017-01-11 14:54:39 2017-01-11 2
...
每个人都有一个想法怎么做?
Ps:最好用日期+ 40天创建一列Mig
,然后用1或2创建另一列Mig2
?
答案 0 :(得分:0)
如果使用tidyverse和lubridate软件包,则可以利用group_by函数并更轻松地操作日期。下面的代码具有一些中间步骤来重现部分数据,但是您可以只使用“ group_by”之后的块。它会返回true或false而不是一两个,但是如果需要,您可以使用ifelse()函数编辑代码。
library(lubridate)
df <- read.delim(text = "Ptt Date
88734 05:39:18 23-Oct-2016
88734 06:53:13 23-Oct-2016
88734 08:32:18 24-Oct-2016
88734 06:45:27 19-Dez-2016
88734 12:30:43 20-Dez-2016
129041 02:45:35 18-Nov-2016
129041 04:55:24 19-Nov-2016
129041 06:45:30 19-Nov-2016
129041 07:10:32 20-Nov-2016
129041 03:43:54 10-Jan-2017
120941 14:54:39 11-Jan-2017", sep = "\t")
df %>%
separate("Ptt......Date", into = c("ptt", "time", "date"), sep = "\\s+") %>%
mutate(date = str_replace(date, pattern = "Dez", replacement = "Dec"), date2 = dmy(date)) %>%
group_by(ptt) %>%
mutate(threshold = min(date2)+days(40), past_threshold = date2 > threshold)
从只有Ptt和Date的第一个数据帧开始。也许在使用lubridate和tidyverse的情况下尝试以下方法。
library(tidyverse)
library(lubridate)
loc_teste2 %>%
mutate(Ptt = as.character(Ptt), Date = as.character(Date), Date = str_replace(Date, pattern = "Dez", replacement = "Dec"), Date = parse_date_time(Date, order = "hmsdmy")) %>%
group_by(Ptt) %>%
mutate(Threshold = min(Date) + days(40)) %>%
ungroup() %>%
mutate(Past_Threshold = Date > Threshold)