我正在尝试使用tensorflow Dataset API加载可以存储在网络存储中的tif图像。我传递给tensorflow.Dataset.interleave函数的map_func没有传递我期望的字符串文件名,而是传递了带有dtype字符串的张量。
我尝试使用sess.run和tensor.eval()评估此张量(也将当前会话作为会话参数传递),但是tensorflow引发ValueError:“ ValueError:Fetch参数不能解释为张量。 (Tensor Tensor(“ arg0:0”,shape =(),dtype = string)不是此图的元素。) or(“ arg0:0”,shape =(),dtype = string)不是此图的元素。)“。
我的tensorflow数据管道的示例
class DataLoader:
...
def setup(self):
...
tf.data.Dataset.from_tensor_slices(
(
self.training_filenames, # a python list of strings
self.training_label_filenames # a python list of strings
)
)
.apply(tf.data.experimental.filter_for_shard(
self.shard_count,
self.shard_index))
.repeat()
.shuffle(buffer_size=self.training_data_shuffle_buffer_size)
.interleave(
lambda data_filepath, label_filepath: (
self.preprocess_training_data(data_filepath, label_filepath)
),
cycle_length=tf.data.experimental.AUTOTUNE,
num_parallel_calls=tf.data.experimental.AUTOTUNE
)
.batch(self.training_data_batch_size)
.prefetch(self.training_data_batch_size)
...
def preprocess_training_data(self, data_filepath, label_filepath):
data = tifffile.imread(self.session.run(data_filepath).decode())
data_resize = (self.training_data_shape[0], self.training_data_shape[1])
data_transpose = (1, 0, 2)
data_scale = 255.0
data_dtype = self.training_data_type.as_numpy_dtype()
data = numpy.transpose(
cv2.resize(data, data_resize), data_transpose
).astype(data_dtype) / data_scale
label = tifffile.imread(self.session.run(label_filepath))
label = numpy.transpose(
numpy.expand_dims(
cv2.resize(
label,
data_resize),
2
),
data_transpose
)
weights = [
self.vec_class_weights(current_label)
.astype(self.label_data_type.as_numpy_dtype())
for current_label
in label
]
return data, label, weights
我希望我的preprocess_training_data函数可以通过字符串传递,或者我可以通过数据集交织转换来评估我的函数的张量,该变换将求值为字符串。