在考虑限制因素的同时实现自动换班时间

时间:2019-06-20 06:00:37

标签: python pandas linear-programming pulp integer-programming

我有一个脚本,该脚本会根据可用性和各种约束条件自动生成轮班时间。这些是:

  1. 在任何给定时间段内,您必须满足最低人员配备要求
  2. 一个人有最小和最大的工作时间
  3. 只能安排员工在其可用时间内工作
  4. 一个人每天只能轮班工作一次
  5. 一个人不能晚于晚上8点开始

要提供有关流程的概述,staff_availability df包含['Person']['MinHours']-['MaxHours'],他们获得了多少['HourlyWage']的报酬和可用性,以小时['Availability_Hr']和15分钟的时段['Availability_15min_Seg']表示。

staffing_requirements df包含一天中的时间['Time']和在此期间所需的工作人员['People']

该脚本返回一个df 'availability_per_member',其中显示每个时间点有多少员工可用。因此,1指示有待调度,而0指示不可用。然后,它旨在分配移位时间,同时使用pulp来考虑约束。

我的问题是关于第五约束。这是一个编码问题。我已经对此进行了注释,因此脚本可以正常工作。约束和错误发布在下面:

# Do not start people later than 8PM
for timeslot in timeslots:
    prob += (sum([staffed[(timeslot, person)] for person in persons])
    <= staffing_requirements.loc[person, 'Availability_Hr'] <= 52)

错误:

KeyError: 'the label [C11] is not in the [index]'

脚本:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates


staffing_requirements = pd.DataFrame({
    'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'],                 
    'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1],                      
    })

staff_availability = pd.DataFrame({
    'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'],                 
    'MinHours' : [5,5,5,5,5,5,5,5,5,5,5],    
    'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10],                 
    'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26],  
    'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'],                              
    'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'],                              
    })

''' Generate availability at each point in time '''

staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']]
staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S')
formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S') 

# 15 Min
staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill()
staffing_requirements = staffing_requirements.reset_index(level=['Time'])

staffing_requirements.index = range(1, len(staffing_requirements) + 1) 

staff_availability.set_index('Person')

staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']]
availability = staff_availability.set_index('Person')[['Availability_15min_Seg']]
availability[['first_15min', 'last_15min']] =  availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int)

availability_per_member =  [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1))
 for idx, row in availability.iterrows()]

availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack()
availability_per_member.index.names = ['Timeslot', 'Person']
availability_per_member = (availability_per_member.to_frame()
                            .join(staff_costs[['HourlyWage']])
                            .rename(columns={0: 'Available'}))


''' Generate shift times based off availability  '''

import pulp
prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs

timeslots = staffing_requirements.index
persons = availability_per_member.index.levels[1]

# A member is either staffed or is not at a certain timeslot
staffed = pulp.LpVariable.dicts("staffed",
                                   ((timeslot, staffmember) for timeslot, staffmember 
                                in availability_per_member.index),
                                 lowBound=0,
                                 cat='Binary')

# Objective = cost (= sum of hourly wages)                              
prob += pulp.lpSum(
    [staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage'] 
    for timeslot, staffmember in availability_per_member.index]
)

# Staff the right number of people
for timeslot in timeslots:
    prob += (sum([staffed[(timeslot, person)] for person in persons]) 
    >= staffing_requirements.loc[timeslot, 'People'])


# Do not staff unavailable persons
for timeslot in timeslots:
    for person in persons:
        if availability_per_member.loc[(timeslot, person), 'Available'] == 0:
            prob += staffed[timeslot, person] == 0

# Do not underemploy people
for person in persons:
    prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
    >= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour

# Do not overemploy people
for person in persons:
    prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
    <= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour

# Do not start people later than 8PM
for timeslot in timeslots:
    prob += (sum([staffed[(timeslot, person)] for person in persons])
    <= staffing_requirements.loc[person, 'Availability_Hr'] <= 52)    

# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
    if timeslot < num_slots:
        for person in persons:
            prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
                (1 - (1./num_slots) *
                 sum([staffed[(s, person)] for s in timeslots if s < timeslot]))    


prob.solve()
print(pulp.LpStatus[prob.status])

output = []
for timeslot, staffmember in staffed:
    var_output = {
        'Timeslot': timeslot,
        'Staffmember': staffmember,
        'Staffed': staffed[(timeslot, staffmember)].varValue,
    }
    output.append(var_output)
output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember'])
output_df.set_index(['Timeslot', 'Staffmember'], inplace=True)
if pulp.LpStatus[prob.status] == 'Optimal':
    print(output_df)

1 个答案:

答案 0 :(得分:1)

评论中有关于这是OR问题还是python / pulp编码问题的讨论。我认为两者都有。

我不了解您应该如何在8PM代码之后开始的无班工作。这可能是因为我没有看到您的数学公式(如评论中所建议)。

我的操作方式如下-您不希望在晚上8点以后开始轮班。我假设这是您尝试进行的时隙52。鉴于您不允许拆分移位,我认为可以应用此约束的最简单方法就是说(用伪代码)

对于每个人,如果他们在之前或晚上8点没有空位,则不允许在晚上8点之后再空位。

在代码中:

for person in persons:
    prob += pulp.lpSum([staffed[timeslot, person] for timeslot in timeslots if timeslot > 52]) <= \
                pulp.lpSum([staffed[timeslot, person] for timeslot in timeslots if timeslot <= 52])*30

要了解其工作原理,请考虑两种情况。

首先,对于在晚上8点或之前没有变化的人(即timeslot <= 52)。对于该人,该约束的右侧变为<=0,因此,在晚上8点(timeslot > 52)之后,槽不能工作。

另一方面,如果计划在晚上8点之前安排至少一个班次,则右侧变为<=30(如果在晚上8点之前存在多个班次,则<=更大的数字),因此约束无效(存在在晚上8点之后只有27个可能的插槽,因此只要在不影响晚上8点之后的工作的前提下工作一个插槽即可。