我有一个脚本,该脚本会根据可用性和各种约束条件自动生成轮班时间。这些是:
要提供有关流程的概述,staff_availability df
包含['Person']
,['MinHours']
-['MaxHours']
,他们获得了多少['HourlyWage']
的报酬和可用性,以小时['Availability_Hr']
和15分钟的时段['Availability_15min_Seg']
表示。
staffing_requirements df
包含一天中的时间['Time']
和在此期间所需的工作人员['People']
。
该脚本返回一个df
'availability_per_member'
,其中显示每个时间点有多少员工可用。因此,1
指示有待调度,而0
指示不可用。然后,它旨在分配移位时间,同时使用pulp
来考虑约束。
我的问题是关于第五约束。这是一个编码问题。我已经对此进行了注释,因此脚本可以正常工作。约束和错误发布在下面:
# Do not start people later than 8PM
for timeslot in timeslots:
prob += (sum([staffed[(timeslot, person)] for person in persons])
<= staffing_requirements.loc[person, 'Availability_Hr'] <= 52)
错误:
KeyError: 'the label [C11] is not in the [index]'
脚本:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates
staffing_requirements = pd.DataFrame({
'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'],
'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1],
})
staff_availability = pd.DataFrame({
'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'],
'MinHours' : [5,5,5,5,5,5,5,5,5,5,5],
'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10],
'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26],
'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'],
'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'],
})
''' Generate availability at each point in time '''
staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']]
staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S')
formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S')
# 15 Min
staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill()
staffing_requirements = staffing_requirements.reset_index(level=['Time'])
staffing_requirements.index = range(1, len(staffing_requirements) + 1)
staff_availability.set_index('Person')
staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']]
availability = staff_availability.set_index('Person')[['Availability_15min_Seg']]
availability[['first_15min', 'last_15min']] = availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int)
availability_per_member = [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1))
for idx, row in availability.iterrows()]
availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack()
availability_per_member.index.names = ['Timeslot', 'Person']
availability_per_member = (availability_per_member.to_frame()
.join(staff_costs[['HourlyWage']])
.rename(columns={0: 'Available'}))
''' Generate shift times based off availability '''
import pulp
prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs
timeslots = staffing_requirements.index
persons = availability_per_member.index.levels[1]
# A member is either staffed or is not at a certain timeslot
staffed = pulp.LpVariable.dicts("staffed",
((timeslot, staffmember) for timeslot, staffmember
in availability_per_member.index),
lowBound=0,
cat='Binary')
# Objective = cost (= sum of hourly wages)
prob += pulp.lpSum(
[staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage']
for timeslot, staffmember in availability_per_member.index]
)
# Staff the right number of people
for timeslot in timeslots:
prob += (sum([staffed[(timeslot, person)] for person in persons])
>= staffing_requirements.loc[timeslot, 'People'])
# Do not staff unavailable persons
for timeslot in timeslots:
for person in persons:
if availability_per_member.loc[(timeslot, person), 'Available'] == 0:
prob += staffed[timeslot, person] == 0
# Do not underemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
>= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
# Do not overemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
<= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
# Do not start people later than 8PM
for timeslot in timeslots:
prob += (sum([staffed[(timeslot, person)] for person in persons])
<= staffing_requirements.loc[person, 'Availability_Hr'] <= 52)
# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
if timeslot < num_slots:
for person in persons:
prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
(1 - (1./num_slots) *
sum([staffed[(s, person)] for s in timeslots if s < timeslot]))
prob.solve()
print(pulp.LpStatus[prob.status])
output = []
for timeslot, staffmember in staffed:
var_output = {
'Timeslot': timeslot,
'Staffmember': staffmember,
'Staffed': staffed[(timeslot, staffmember)].varValue,
}
output.append(var_output)
output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember'])
output_df.set_index(['Timeslot', 'Staffmember'], inplace=True)
if pulp.LpStatus[prob.status] == 'Optimal':
print(output_df)
答案 0 :(得分:1)
评论中有关于这是OR问题还是python / pulp编码问题的讨论。我认为两者都有。
我不了解您应该如何在8PM代码之后开始的无班工作。这可能是因为我没有看到您的数学公式(如评论中所建议)。
我的操作方式如下-您不希望在晚上8点以后开始轮班。我假设这是您尝试进行的时隙52
。鉴于您不允许拆分移位,我认为可以应用此约束的最简单方法就是说(用伪代码)
对于每个人,如果他们在之前或晚上8点没有空位,则不允许在晚上8点之后再空位。
在代码中:
for person in persons:
prob += pulp.lpSum([staffed[timeslot, person] for timeslot in timeslots if timeslot > 52]) <= \
pulp.lpSum([staffed[timeslot, person] for timeslot in timeslots if timeslot <= 52])*30
要了解其工作原理,请考虑两种情况。
首先,对于在晚上8点或之前没有变化的人(即timeslot <= 52
)。对于该人,该约束的右侧变为<=0
,因此,在晚上8点(timeslot > 52
)之后,槽不能工作。
另一方面,如果计划在晚上8点之前安排至少一个班次,则右侧变为<=30
(如果在晚上8点之前存在多个班次,则<=更大的数字),因此约束无效(存在在晚上8点之后只有27个可能的插槽,因此只要在不影响晚上8点之后的工作的前提下工作一个插槽即可。