我正在构建Keras LSTM来解决Kaggle's avocado price dataset。我想使用Keras' model.fit()
function的validation_data
参数。但是,当我添加该参数时,将引发我在跟踪问题时遇到的InvalidArgumentError。
这是错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-32-565d13c1305e> in <module>
16 return model
17
---> 18 trained_model = build_model()
<ipython-input-32-565d13c1305e> in build_model()
11 # fit model
12 es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=1)
---> 13 model.fit(train_data, epochs=12000,verbose=0, validation_data = val_data)
14 # validation_data = (val_data[0], val_data[1])
15 print(model.summary())
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, max_queue_size, workers, use_multiprocessing, **kwargs)
878 initial_epoch=initial_epoch,
879 steps_per_epoch=steps_per_epoch,
--> 880 validation_steps=validation_steps)
881
882 def evaluate(self,
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, mode, validation_in_fit, **kwargs)
362 verbose=0,
363 mode='test',
--> 364 validation_in_fit=True)
365 if not isinstance(val_results, list):
366 val_results = [val_results]
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, mode, validation_in_fit, **kwargs)
327
328 # Get outputs.
--> 329 batch_outs = f(ins_batch)
330 if not isinstance(batch_outs, list):
331 batch_outs = [batch_outs]
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
3074
3075 fetched = self._callable_fn(*array_vals,
-> 3076 run_metadata=self.run_metadata)
3077 self._call_fetch_callbacks(fetched[-len(self._fetches):])
3078 return nest.pack_sequence_as(self._outputs_structure,
~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/.local/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [2,1] vs. shape[1] = [1,1]
[[{{node loss_11/dense_13_loss/MeanSquaredError/weighted_loss/broadcast_weights/assert_broadcastable/is_valid_shape/has_valid_nonscalar_shape/has_invalid_dims/concat}}]]
我用model.fit()
行呼叫model.fit(train_data, epochs=12000,verbose=0, validation_data = val_data)
。当validation_data
不是参数时,该函数运行良好。 train_data
和val_data
都是包含数据点的3D numpy数组的元组(X, Y)
。