我想使用geotools:gt-reference将本地右手3D直角坐标系中给定的坐标转换为3D地理坐标。
我在(移动平台的)本地右手坐标系中具有传感器的位置和方向。我知道局部坐标系相对于WGS84的平移和旋转。从数学上讲,该操作相当简单,因为可以通过Helmert变换来解决。我想使用geotools完成此任务。 geotools-userguide提到了一个类DefaultEngineeringCRS
,它似乎很适合我的本地坐标系。不幸的是,我没有找到任何有关此类用法以及如何定义其来源和方向的示例代码。
我想做这样的事情
CoordinateReferenceSystem worldFrame = DefaultGeographicCRS.WGS84_3D;
CoordinateReferenceSystem bodyFrame = DefaultEngineeringCRS.CARTESIAN_3D;
/* set transformation rules for how to transform coordinates given in bodyFrame to coordinates in worldFrame */
DirectPosition locationOfSensor = DirectPosition3D(bodyFrame, x, y, z);
MathTransform trafo = CRS.findMathTransform(worldFrame, bodyFrame, true);
trafo.transform(locationOfSensor, locationOfSensor);
答案 0 :(得分:0)
我不确定我能否完全回答这个问题,但这可能会在正确的方向上为您提供帮助:
您可以使用MathTransformFactory
建立转换。您也可以查询工厂进行操作:
System.out.println("operations");
for (OperationMethod op : mtFactory.getAvailableMethods(Operation.class)) {
System.out.println(op.getName());
}
哪个给出的列表如下:
operations
Geotools:Logarithmic
Geotools:Exponential
OGC:Affine
EPSG:Longitude rotation
EPSG:Geocentric translations (geog2D domain)
EPSG:Position Vector transformation (geog2D domain)
EPSG:Coordinate Frame Rotation (geog2D domain)
OGC:Ellipsoid_To_Geocentric
OGC:Geocentric_To_Ellipsoid
OGC:Molodenski
OGC:Abridged_Molodenski
OGC:NADCON
EPSG:NTv2
EPSG:Similarity transformation
Geotools:WarpPolynomial
Geotools:Earth gravitational model
OGC:Equidistant_Cylindrical
EPSG:Equidistant Cylindrical (Spherical)
ESRI:Plate_Carree
OGC:Mercator_1SP
OGC:Mercator_2SP
EPSG:Popular Visualisation Pseudo Mercator
OGC:Transverse_Mercator
EPSG:Transverse Mercator (South Orientated)
OGC:Oblique_Mercator
ESRI:Hotine_Oblique_Mercator_Two_Point_Center
OGC:Hotine_Oblique_Mercator
ESRI:Hotine_Oblique_Mercator_Two_Point_Natural_Origin
OGC:Albers_Conic_Equal_Area
OGC:Lambert_Conformal_Conic_1SP
OGC:Lambert_Conformal_Conic_2SP
ESRI:Lambert_Conformal_Conic
OGC:Lambert_Conformal_Conic_2SP_Belgium
OGC:Lambert_Azimuthal_Equal_Area
OGC:Orthographic
ESRI:Stereographic
OGC:Oblique_Stereographic
OGC:Polar_Stereographic
EPSG:Polar Stereographic (variant B)
ESRI:Stereographic_North_Pole
ESRI:Stereographic_South_Pole
OGC:New_Zealand_Map_Grid
OGC:Krovak
OGC:Cassini_Soldner
GeoTIFF:CT_Equidistant_Conic
OGC:Polyconic
Geotools:Robinson
ESRI:Winkel_Tripel
ESRI:Aitoff
Geotools:Eckert_IV
Geotools:Mollweide
Geotools:Wagner_IV
Geotools:Wagner_V
OGC:Gnomonic
OGC:World_Van_der_Grinten_I
Geotools:Sinusoidal
AUTO:General_Oblique
AUTO:MeteosatSG
OGC:GEOS
AUTO:Rotated_Pole
OGC:Azimuthal_Equidistant
Geotools:Cylindrical_Equal_Area
Geotools:Behrmann
Geotools:Lambert Cylindrical Equal Area (Spherical)
Geotools:Equal Earth
或通过Projection
:
System.out.println("projections");
for (OperationMethod op : mtFactory.getAvailableMethods(Projection.class)) {
System.out.println(op.getName());
}
给出
projections
OGC:Equidistant_Cylindrical
EPSG:Equidistant Cylindrical (Spherical)
ESRI:Plate_Carree
OGC:Mercator_1SP
OGC:Mercator_2SP
EPSG:Popular Visualisation Pseudo Mercator
OGC:Transverse_Mercator
EPSG:Transverse Mercator (South Orientated)
OGC:Oblique_Mercator
ESRI:Hotine_Oblique_Mercator_Two_Point_Center
OGC:Hotine_Oblique_Mercator
ESRI:Hotine_Oblique_Mercator_Two_Point_Natural_Origin
OGC:Albers_Conic_Equal_Area
OGC:Lambert_Conformal_Conic_1SP
OGC:Lambert_Conformal_Conic_2SP
ESRI:Lambert_Conformal_Conic
OGC:Lambert_Conformal_Conic_2SP_Belgium
OGC:Lambert_Azimuthal_Equal_Area
OGC:Orthographic
ESRI:Stereographic
OGC:Oblique_Stereographic
OGC:Polar_Stereographic
EPSG:Polar Stereographic (variant B)
ESRI:Stereographic_North_Pole
ESRI:Stereographic_South_Pole
OGC:New_Zealand_Map_Grid
OGC:Krovak
OGC:Cassini_Soldner
GeoTIFF:CT_Equidistant_Conic
OGC:Polyconic
Geotools:Robinson
ESRI:Winkel_Tripel
ESRI:Aitoff
Geotools:Eckert_IV
Geotools:Mollweide
Geotools:Wagner_IV
Geotools:Wagner_V
OGC:Gnomonic
OGC:World_Van_der_Grinten_I
Geotools:Sinusoidal
AUTO:General_Oblique
AUTO:MeteosatSG
OGC:GEOS
AUTO:Rotated_Pole
OGC:Azimuthal_Equidistant
Geotools:Cylindrical_Equal_Area
Geotools:Behrmann
Geotools:Lambert Cylindrical Equal Area (Spherical)
Geotools:Equal Earth
然后您可以使用以下方法确定“操作”或“投影”所需的参数:
mtFactory.getDefaultParameters("EPSG:Coordinate Frame Rotation (geog2D domain)")
给出:
Coordinate Frame Rotation (geog2D domain) : dx = 0.0
dy = 0.0
dz = 0.0
ex = 0.0
ey = 0.0
ez = 0.0
ppm = 0.0
这时您应该可以定义新的投影:
try {
ParameterValueGroup parameters = mtFactory.getDefaultParameters("EPSG:Coordinate Frame Rotation (geog2D domain)");
parameters.parameter("dx").setValue(1.0);
parameters.parameter("dy").setValue(-1.0);
parameters.parameter("dz").setValue(0.0);
parameters.parameter("ex").setValue(1.0);
parameters.parameter("ey").setValue(-1.0);
parameters.parameter("ez").setValue(0.0);
Conversion conversion = new DefiningConversion("Frame Rot", parameters);
GeographicCRS worldFrame = org.geotools.referencing.crs.DefaultGeographicCRS.WGS84;
CartesianCS bodyFrame = org.geotools.referencing.cs.DefaultCartesianCS.GENERIC_2D;
Map<String, ?> properties = Collections.singletonMap("name", "My Proj");
projCRS = crsFactory.createProjectedCRS(properties, worldFrame, conversion, bodyFrame);
} catch (FactoryException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
但是我这里的尺寸不匹配,但是如果您对转换有更好的了解,则可能会做得更好。