我有这个数据集:
structure(list(time = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15), ttt1_1 = c(0, 15, 20, 30, 40, 50, 60, 70, 80, 90,
130, 160, 240, 320, 450), ttt1_2 = c(0, 17, 22, 34, 50, 50, 65,
75, 90, 120, 160, 200, 300, 400, 500), ttt1_3 = c(0, 19, 25,
36, 47, 60, 70, 86, 110, 130, 195, 240, 360, 480, 650), ttt2_1 = c(0,
45, 60, 90, 120, 150, 210, 245, 280, 315, 455, 560, 720, 960,
1350), ttt2_2 = c(0, 51, 66, 102, 130, 150, 228, 262, 315, 420,
560, 700, 900, 1200, 1500), ttt2_3 = c(0, 57, 75, 108, 141, 180,
245, 301, 385, 455, 683, 840, 1080, 1440, 1950), ttt3_1 = c(0,
90, 120, 180, 240, 300, 420, 490, 560, 630, 910, 1120, 1440,
1920, 2700), ttt3_2 = c(0, 102, 132, 204, 300, 300, 455, 525,
630, 840, 1120, 1400, 1800, 2400, 3000), ttt3_3 = c(0, 114, 150,
216, 282, 360, 490, 602, 770, 910, 1365, 1680, 2160, 2880, 3900
)), row.names = c(NA, 15L), class = "data.frame")
看起来像这样:
> datapoids
time ttt1_1 ttt1_2 ttt1_3 ttt2_1 ttt2_2 ttt2_3 ttt3_1 ttt3_2 ttt3_3
1 1 0 0 0 0 0 0 0 0 0
2 2 15 17 19 45 51 57 90 102 114
3 3 20 22 25 60 66 75 120 132 150
4 4 30 34 36 90 102 108 180 204 216
5 5 40 50 47 120 130 141 240 300 282
6 6 50 50 60 150 150 180 300 300 360
7 7 60 65 70 210 228 245 420 455 490
8 8 70 75 86 245 262 301 490 525 602
9 9 80 90 110 280 315 385 560 630 770
10 10 90 120 130 315 420 455 630 840 910
11 11 130 160 195 455 560 683 910 1120 1365
12 12 160 200 240 560 700 840 1120 1400 1680
13 13 240 300 360 720 900 1080 1440 1800 2160
14 14 320 400 480 960 1200 1440 1920 2400 2880
15 15 450 500 650 1350 1500 1950 2700 3000 3900
此数据集表示9个人(ttt1,ttt2,ttt3 3个不同组中的3个人)的重量随时间的变化(第一列=天的经过时间)。
首先,我正在尝试绘制这种图形(使用Graphpad Prism完成):
但是到目前为止,我唯一得到的就是(我一次只能绘制一列,而我想绘制3列的平均值(例如ttt1_1,ttt1_2,ttt1_3),然后执行此操作我的三个小组(ttt1,ttt2,ttt3)。
ggplot(data=datapoids, aes(x=time,y=ttt3_1)) +
geom_point(size=2)
哪个给我: plot with ggplot2
有什么想法可以使用ggplot2获得GraphPad的功能吗? 任何建议都会有很大帮助!
我将数据框的组织方式更改为:
> dput(head(datapoids, 60))
structure(list(time = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15), group = c(1,
2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
2, 3), m1 = c(0, 0, 0, 15, 45, 90, 20, 60, 120, 30, 90, 180,
40, 120, 240, 50, 150, 300, 60, 210, 420, 70, 245, 490, 80, 280,
560, 90, 315, 630, 130, 455, 910, 160, 560, 1120, 240, 720, 1440,
320, 960, 1920, 450, 1350, 2700), m2 = c(0, 0, 0, 17, 51, 102,
22, 66, 132, 34, 102, 204, 50, 130, 300, 50, 150, 300, 65, 228,
455, 75, 262, 525, 90, 315, 630, 120, 420, 840, 160, 560, 1120,
200, 700, 1400, 300, 900, 1800, 400, 1200, 2400, 500, 1500, 3000
), m3 = c(0, 0, 0, 19, 57, 114, 25, 75, 150, 36, 108, 216, 47,
141, 282, 60, 180, 360, 70, 245, 490, 86, 301, 602, 110, 385,
770, 130, 455, 910, 195, 683, 1365, 240, 840, 1680, 360, 1080,
2160, 480, 1440, 2880, 650, 1950, 3900)), row.names = c(NA, -45L
), class = c("tbl_df", "tbl", "data.frame"))
> datapoids
# A tibble: 45 x 5
time group m1 m2 m3
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 0 0 0
2 1 2 0 0 0
3 1 3 0 0 0
4 2 1 15 17 19
5 2 2 45 51 57
6 2 3 90 102 114
7 3 1 20 22 25
8 3 2 60 66 75
9 3 3 120 132 150
10 4 1 30 34 36
# ... with 35 more rows
第1列代表经过时间,第2列是组,第3-4-5列是每组中的三个人。
到目前为止,我设法获得了图表上的三组数据,但每次仅用于1个人,我无法获得均值+/- SD ...
ggplot(datapoids, aes(x = time, y = m1, group = group)) +
geom_point()
three groups but only one individual per group
好的,这是另一个更新。 我已经格式化了数据集,使其看起来像这样:
> print.data.frame(datapoids)
weight group time
1 0 1 1
2 0 1 1
3 0 1 1
4 0 2 1
5 0 2 1
6 0 2 1
7 0 3 1
8 0 3 1
9 0 3 1
10 15 1 2
11 17 1 2
12 19 1 2
13 45 2 2
14 51 2 2
15 57 2 2
16 90 3 2
17 102 3 2
18 114 3 2
19 20 1 3
20 22 1 3
21 25 1 3
22 60 2 3
23 66 2 3
24 75 2 3
25 120 3 3
26 132 3 3
27 150 3 3
28 30 1 4
29 34 1 4
30 36 1 4
31 90 2 4
32 102 2 4
33 108 2 4
34 180 3 4
35 204 3 4
36 216 3 4
37 40 1 5
38 50 1 5
39 47 1 5
40 120 2 5
41 130 2 5
42 141 2 5
43 240 3 5
44 300 3 5
45 282 3 5
46 50 1 6
47 50 1 6
48 60 1 6
49 150 2 6
50 150 2 6
51 180 2 6
52 300 3 6
53 300 3 6
54 360 3 6
55 60 1 7
56 65 1 7
57 70 1 7
58 210 2 7
59 228 2 7
60 245 2 7
61 420 3 7
62 455 3 7
63 490 3 7
64 70 1 8
65 75 1 8
66 86 1 8
67 245 2 8
68 262 2 8
69 301 2 8
70 490 3 8
71 525 3 8
72 602 3 8
73 80 1 9
74 90 1 9
75 110 1 9
76 280 2 9
77 315 2 9
78 385 2 9
79 560 3 9
80 630 3 9
81 770 3 9
82 90 1 10
83 120 1 10
84 130 1 10
85 315 2 10
86 420 2 10
87 455 2 10
88 630 3 10
89 840 3 10
90 910 3 10
91 130 1 11
92 160 1 11
93 195 1 11
94 455 2 11
95 560 2 11
96 683 2 11
97 910 3 11
98 1120 3 11
99 1365 3 11
100 160 1 12
101 200 1 12
102 240 1 12
103 560 2 12
104 700 2 12
105 840 2 12
106 1120 3 12
107 1400 3 12
108 1680 3 12
109 240 1 13
110 300 1 13
111 360 1 13
112 720 2 13
113 900 2 13
114 1080 2 13
115 1440 3 13
116 1800 3 13
117 2160 3 13
118 320 1 14
119 400 1 14
120 480 1 14
121 960 2 14
122 1200 2 14
123 1440 2 14
124 1920 3 14
125 2400 3 14
126 2880 3 14
127 450 1 15
128 500 1 15
129 650 1 15
130 1350 2 15
131 1500 2 15
132 1950 2 15
133 2700 3 15
134 3000 3 15
135 3900 3 15
> dput(head(datapoids, 10000000))
structure(list(weight = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 17,
19, 45, 51, 57, 90, 102, 114, 20, 22, 25, 60, 66, 75, 120, 132,
150, 30, 34, 36, 90, 102, 108, 180, 204, 216, 40, 50, 47, 120,
130, 141, 240, 300, 282, 50, 50, 60, 150, 150, 180, 300, 300,
360, 60, 65, 70, 210, 228, 245, 420, 455, 490, 70, 75, 86, 245,
262, 301, 490, 525, 602, 80, 90, 110, 280, 315, 385, 560, 630,
770, 90, 120, 130, 315, 420, 455, 630, 840, 910, 130, 160, 195,
455, 560, 683, 910, 1120, 1365, 160, 200, 240, 560, 700, 840,
1120, 1400, 1680, 240, 300, 360, 720, 900, 1080, 1440, 1800,
2160, 320, 400, 480, 960, 1200, 1440, 1920, 2400, 2880, 450,
500, 650, 1350, 1500, 1950, 2700, 3000, 3900), group = structure(c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L,
3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L,
2L, 2L, 2L, 3L, 3L, 3L), .Label = c("1", "2", "3"), class = "factor"),
time = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L), .Label = c("1", "2", "3", "4", "5", "6",
"7", "8", "9", "10", "11", "12", "13", "14", "15"), class = "factor")), row.names = c(NA,
-135L), class = c("tbl_df", "tbl", "data.frame"))
并以此:
ggplot(datapoids, aes(x = time, y = weight)) +
geom_boxplot(aes(fill=group), position="identity") +
geom_point()
我设法得到了它(还不是+/- SD):
答案 0 :(得分:0)
由于@Axeman,我找到了答案:
fun.data="mean_sdl"
fun.args = list(mult=1)
表示平均值+/-常数时间标准推导,ggplot(datapoidsmono, aes(x = time, y = weight)) +
stat_summary(aes(color = group), fun.data="mean_sdl", fun.args = list(mult=1), geom="errorbar", position = "identity", size=0.5, width=0.2, show.legend = T) +
stat_summary(fun.y = "mean", geom = "point", size=3, aes(shape=group,colour=group)) +
scale_x_discrete(name = "Days after injection") +
scale_y_continuous(name = "Weight (g)", limits=c(0, 4000), breaks = seq(0, 4000,500)) +
theme(axis.line.x = element_line(size = 0.5, colour = "black"),axis.text.x = element_text(colour="black", size = 12),axis.line.y = element_line(size = 0.5, colour = "black"),axis.text.y = element_text(colour="black", size = 12),axis.title = element_text(size =15, face="bold"),plot.title = element_text(size =20, face = "bold"),panel.grid.major = element_line(colour = "#F1F1F1"),panel.grid.minor = element_blank(), panel.background = element_blank()) +
scale_color_manual(values=c("green", "blue", "red")) +
ggtitle("Weight variation over time") + theme(plot.title = element_text(hjust = 0.5))
定义常数(此处= 1)。
我只需要查找如何(进行中):
使用:
//my variable $mailto got all the emails from the database
$mailto = preg_replace('#\s+#',',',trim($mailto));
$headers = 'FROM: COMPANY INC <support@admin.com>\r\n';
$headers .= 'BBC'.$mailto."\r\n";
$headers .= 'Content-Type:text/html; charset=ISO- 8859-1\r\n';
mail($mailto, "MY TITle", $mailbody, $headers);
答案 1 :(得分:-1)
我的方程式搜索发现S型磁饱和度方程式最适合三组的平均权重。根据您的评论,首次使用的初始经过时间为零。
体重= a * x *(1.0 + b * exp(c *经过的天数))
我对每组的拟合结果如下:
对于第1组,参数为:
a = 8.2069429067318076E+00
b = 3.4803188790045243E-02
c = 3.3342423727900505E-01
R平方= 0.997,RMSE = 7.96
对于第2组,参数为:
a = 2.7849455860678560E+01
b = 4.7404034036124171E-02
c = 2.9879802065164002E-01
R平方= 0.999,RMSE = 12.85
第3组的参数为:
a = 5.6346090778919425E+01
b = 4.5307611859092961E-02
c = 3.0096010027034203E-01
R平方= 0.999,RMSE = 25.941