具有二元预测变量的randomForest回归

时间:2019-06-06 10:40:33

标签: r random-forest

我有一个包含8个二元预测变量(是/否)和数值结果的数据库。我想找出哪种预测变量组合最适合预测我的结果,但是R的randomForest不喜欢二进制预测变量:我得到了负方差解释,并且在尝试使用“重要性”对预测变量进行评分时出错。

我的代码:

library(randomForest)
#binary predictors
print_size <- c(0,0,0,0,0,1,0) 
mid_ridge <- c(1,1,0,0,1,0,0)
classification <- c(1,1,1,1,1,1,0)
ridge_thickness <- c(1,1,1,1,1,1,1)
delta_center_distance <- c(1,0,1,1,1,1,1)
double_loop_size <- c(0,0,0,0,0,0,1)
whorl_length <- c(0,0,0,0,0,0,1)
loop_angle <- c(0,0,0,1,0,0,1)
#numeric result
LR <- c(44,42,34,20,19,11,9)
pred <- cbind(print_size, mid_ridge, classification, ridge_thickness,
              delta_center_distance, double_loop_size, 
              whorl_length, loop_angle, LR)
output.forest <- randomForest(LR ~ ., ntree=1000,data = pred, importance=TRUE)
print(importance(output.forest,type = 1))

结果:

Mean of squared residuals: 210.327
% Var explained: -18.57

错误

  

UseMethod(“ importance”)中的错误:没有适用的方法   “重要性”应用于“ c('standardGeneric')类的对象,   'genericFunction','function','OptionalFunction','PossibleMethod',   'optionalMethod')“

0 个答案:

没有答案