根据其他数据框添加特定的列值

时间:2019-06-05 14:24:27

标签: python pandas

我有第一个dataFrame

df1:

A         B       C    D
Car               0
Bike              0
Train             0
Plane             0
Other_1  Plane    2
Other_2  Plane    3
Other 3  Plane    4

和另外一个:

df2:

A         B       
Car       4 %        
Bike      5 %        
Train     6 %        
Plane     7 %

所以我想得到这种组合:

df1:

A         B       C    D
Car               0    4 %
Bike              0    5 %
Train             0    6 %
Plane             0    7 %
Other_1  Plane    2    2
Other_2  Plane    3    3
Other 3  Plane    4    4  

哪个是最好的方法?

2 个答案:

答案 0 :(得分:3)

如果df和df2的索引相同,则可以使用:

df['D'] = df2['B'].combine_first(df['C'])

输出:

         A      B  C    D
0      Car    NaN  0  4 %
1     Bike    NaN  0  5 %
2    Train    NaN  0  6 %
3    Plane    NaN  0  7 %
4  Other_1  Plane  2    2
5  Other_2  Plane  3    3
6  Other_3  Plane  4    4

如果索引不一致,则可以在A列上使用merge

df_out = df.merge(df2, on ='A', how='left', suffixes=('','y'))
df_out.assign(D = df_out.By.fillna(df_out.C)).drop('By', axis=1)

或使用@piRSquared improved one-liner

df.drop('D',1).merge(df2.rename(columns={'B':'D'}), how='left',on ='A')

输出:

         A      B  C    D
0      Car    NaN  0  4 %
1     Bike    NaN  0  5 %
2    Train    NaN  0  6 %
3    Plane    NaN  0  7 %
4  Other_1  Plane  2    2
5  Other_2  Plane  3    3
6  Other_3  Plane  4    4

答案 1 :(得分:1)

map

df1.assign(D=df1.A.map(dict(zip(df2.A, df2.B))))

         A      B  C    D
0      Car    NaN  0  4 %
1     Bike    NaN  0  5 %
2    Train    NaN  0  6 %
3    Plane    NaN  0  7 %
4  Other_1  Plane  2  NaN
5  Other_2  Plane  3  NaN
6  Other_3  Plane  4  NaN