我如何通过使用Keras和Tensorflow将图像分类模型另存为.pb文件及其label.txt,以便在android.i上使用这两个文件,所以有一个代码开头,并且该代码仅保存.pb文件而不是label.txt
我已经做完孔了,但还没有完成label.txt 这是代码
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import keras
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout,Activation
from keras.optimizers import Adam
from keras.callbacks import TensorBoard
from keras.layers.core import Lambda
from keras.optimizers import Adam
import keras
import keras.backend as k
import tensorflow as tf
from tensorflow.python.framework import graph_util
print(keras.__version__)
print(tf.__version__)
import os
train_df = pd.read_csv('fashionmnist/fashion-mnist_train.csv',sep=',')
test_df = pd.read_csv('fashionmnist/fashion-mnist_test.csv',sep=',')
train_data =np.array(train_df,dtype = 'float32')
test_data = np.array(test_df,dtype = 'float32')
x_train = train_data[:,1:]/255
y_train = train_data[:,0]
x_test = train_data[:,1:]/255
y_test = train_data[:,0]
x_train,x_validate,y_train,y_validate=train_test_split(x_train,y_train,test_size = 0.2,random_state = 12345)
image = x_train[50,:].reshape((28,28))
plt.imshow(image)
plt.show()
image_rows =28
image_cols= 28
batch_size =100
image_shape =(image_rows,image_cols,1)
x_train = x_train.reshape(x_train.shape[0],*image_shape)
x_test = x_test.reshape(x_test.shape[0],*image_shape)
x_validate = x_validate.reshape(x_validate.shape[0],*image_shape)
def build_network(is_training=True):
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=image_shape, padding='same',name="1_conv"))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3), padding='same',name="2_conv"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),name="1_pool"))
model.add(Conv2D(64, (3, 3), padding='same',name="3_conv"))
model.add(Activation('relu'))
model.add(Conv2D(64,(3, 3), padding='same',name="4_conv"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),name="2_pool"))
model.add(Conv2D(128,(3, 3),padding='same',name="5_conv"))
model.add(Activation('relu'))
model.add(Conv2D(128, (3, 3),padding='same',name="6_conv"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),name="3_pool"))
model.add(Conv2D(256,(3, 3), padding='same',name="7_conv"))
model.add(Activation('relu'))
model.add(Conv2D(256, (3, 3), padding='same',name="8_conv"))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),name="4_pool"))
model.add(Flatten())
model.add(Dense(512,name="fc_1"))
model.add(Activation('relu'))
if (is_training):
#model.add(Dense(512, activation='relu'))
#model.add(Dropout(0.5, name="drop_1"))
model.add(Lambda(lambda x:k.dropout(x,level=0.5),name="drop_1"))
model.add(Dense(10,name="fc_2"))
model.add(Activation('softmax',name="class_result"))
#model.summary()
return model
tf.reset_default_graph()
sess = tf.Session()
k.set_session(sess)
model=build_network()
history_dict = {}
model.compile(loss='sparse_categorical_crossentropy',optimizer = Adam(),metrics=['accuracy'])
class TFCheckpointCallback(keras.callbacks.Callback):
def __init__(self,saver,sess):
self.saver=saver
self.sess=sess
def on_epoch_end(self,epoch,log=None):
self.saver.save(self.sess,'fMnist/ckpt',global_step=epoch)
tf_saver= tf.train.Saver(max_to_keep=2)
checkpoint_callback= TFCheckpointCallback(tf_saver,sess)
%time
tf_graph=sess.graph
tf.train.write_graph(tf_graph.as_graph_def(),'freeze','fm_graph.pdtxt',as_text=True)
%time
history = model.fit(x_train,
y_train,
batch_size=batch_size,
epochs=50,
callbacks=[checkpoint_callback],
shuffle=True,
verbose=1,
validation_data=(x_validate,y_validate)
)
sess.close()
model_folder='fMnist/'
def prepare_graph_for_freezing(model_folder):
model=build_network(is_training=False)
checkpoint=tf.train.get_checkpoint_state(model_folder)
input_checkpoint=checkpoint.model_checkpoint_path
saver=tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
k.set_session(sess)
saver.restore(sess,input_checkpoint)
tf.gfile.MakeDirs(model_folder+'freeze')
saver.save(sess,model_folder + 'freeze/ckpt',global_step=0)
def freeze_graph(model_folder):
checkpoint =tf.train.get_checkpoint_state(model_folder)
print(model_folder+'freeze/')
input_checkpoint = checkpoint.model_checkpoint_path
absolut_model_folder="/".join(input_checkpoint.split('/')[:-1])
output_graph=absolut_model_folder + "/fm_freazen_model.pb"
print(output_graph)
output_node_name = "class_result/Softmax"
clear_devices = True
new_saver= tf.train.import_meta_graph(input_checkpoint + '.meta',clear_devices=clear_devices)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess2:
print(input_checkpoint)
new_saver.restore(sess2,input_checkpoint)
output_graph_def=graph_util.convert_variables_to_constants(
sess2,
input_graph_def,
output_node_name.split(","))
with tf.gfile.GFile(output_graph,"wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph."% len(output_graph_def.node))
tf.reset_default_graph()
prepare_graph_for_freezing("freeze/")
freeze_graph("freeze/")
我有检查点和.pb文件
但是我没有label.txt文件
答案 0 :(得分:1)
就Android上的图像分类而言,我建议您使用TensorFlow Lite而不是直接使用协议缓冲区。
首先,您需要将Keras模型(.h5
)转换为TensorFlow Lite模型(.tflite
)。
converter = tf.lite.TFLiteConverter.from_keras_model_file( 'model.h5' )
tflite_buffer = converter.convert()
open( 'tflite_model.tflite' , 'wb' ).write( tflite_buffer )
该模型已准备好在Android上加载。要检查输入和输出dtype
和shape
,请参考this文件。
现在在Android上,首先在build.gradle
中添加TensorFlow Lite依赖项。
dependencies {
...
implementation 'org.tensorflow:tensorflow-lite:1.13.1'
...
}
现在,我们将模型加载为MappedByteBuffer
对象。
@Throws(IOException :: class)
private fun loadModelFile(): MappedByteBuffer {
val MODEL_ASSETS_PATH = "model.tflite"
val assetFileDescriptor = assets.openFd(MODEL_ASSETS_PATH)
val fileInputStream = FileInputStream(assetFileDescriptor.getFileDescriptor())
val fileChannel = fileInputStream.getChannel()
val startoffset = assetFileDescriptor.getStartOffset()
val declaredLength = assetFileDescriptor.getDeclaredLength()
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startoffset, declaredLength)
}
使用interpreter.run()
方法,我们会在给出一些输入的情况下产生一个推断。参见此file。此文件包含使用Bitmap
方法调整Bitmap.createScaledBitmap
大小并将其转换为float[][]
val interpreter = Interpreter( loadModelFile() )
val inputs : Array<FloatArray> = arrayOf( some_input_image. )
val outputs : Array<FloatArray> = arrayOf( floatArrayOf( 0.0f , 0.0f ) )
interpreter.run( inputs , outputs )
val output = outputs[0]
仅此而已。 TFLite比TensorFlow Mobile快得多。
注意:TF Lite仅支持少数几个操作。由于完全支持与CNN相关的操作,因此我们也可以在Android和iOS中使用TFLite进行图像分类。
提示:
要减小.tflite
文件的大小,请在使用Python转换模型时使用post_training_quantize
标志。
converter = tf.lite.TFLiteConverter.from_keras_model_file( 'model.h5' )
converter.post_training_quantize = True
tflite_buffer = converter.convert()
open( 'tflite_model.tflite' , 'wb' ).write( tflite_buffer )
此外,尝试使用 Firebase MLKit 在Firebase中托管自定义模型。
我创建了许多应用程序,这些应用程序使用TF对图像和文本进行分类。
https://github.com/shubham0204/Spam_Classification_Android_Demo