我的模型中有三个Input层,并且将“ input3”设置为常量值。然后,将“ input3”输入到Embedding层,获取结果“ lookup_table”,然后执行其他一些操作。
但是当我使用model.summary()来观察我的模型和训练参数时,我发现Input3层和Embedding层没有添加到模型中,并且我认为Embedding层的参数将不会被训练
我真的为此感到困扰,任何帮助将不胜感激!
notifyDatasetChanged()
The code
import numpy as np
from keras.models import Model
from keras.layers import*
import keras.backend as K
np_constant = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
def NN():
input1 = Input(batch_shape=(None,1),name='input1',dtype='int32')
input2 = Input(batch_shape=(None,1),name='input2',dtype='int32')
# constant_tensor = K.constant(np_constant)
input3 = Input(tensor=K.constant(np_constant),batch_shape=(3,3),dtype='int32',name='constant_input_3')
embedding = Embedding(input_dim=10,output_dim=5,input_length=3)
lookup_table = embedding(input3)
lookup_table = Lambda(lambda x: K.reshape(x, (-1,15)))(lookup_table)
output1 = Lambda(lambda x: K.gather(lookup_table, K.cast(x, dtype='int32')))(input1)
output2 = Lambda(lambda x: K.gather(lookup_table, K.cast(x, dtype='int32')))(input2)
# Merge branches
output = Concatenate(axis=1)([output1, output2])
# Process merged branch
output = Dense(units=2
, activation='softmax'
)(output)
model = Model([input1, input2, input3], outputs=output)
return model
model = NN()
model.summary()
in_1 = np.array([1,2,1])
in_2 = np.array([1,0,1])
model.compile() # just for example
model.fit([in_1,in_2])
我必须在model.fit()函数中提供数据,并且input3始终是常数,并且input3的形状不同于input1和input2,所以我以这种方式使用它。但是我不知道为什么没有将Input3层和Embedding层添加到模型中。
答案 0 :(得分:0)
我修改了原始代码,在模型外部定义了一个自定义函数,并按照Anakin的建议将张量列表传递到Lambda
层中。这是修改后的代码。
import numpy as np
from keras.models import Model
from keras.layers import*
import keras.backend as K
np_constant = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
def look_up(arg):
in1 = arg[0]
in2 = arg[1]
lookup_table = arg[2]
in1 = Lambda(lambda x: K.reshape(x, (-1, )))(in1)
in2 = Lambda(lambda x: K.reshape(x, (-1, )))(in2)
output1 = Lambda(lambda x: K.gather(lookup_table, K.cast(x, dtype='int32')))(in1)
output2 = Lambda(lambda x: K.gather(lookup_table, K.cast(x, dtype='int32')))(in2)
return [output1,output2]
def NN():
input1 = Input(batch_shape=(None,1),name='input1',dtype='int32')
input2 = Input(batch_shape=(None,1),name='input2',dtype='int32')
# constant_tensor = K.constant(np_constant)
input3 = Input(tensor=K.constant(np_constant),batch_shape=(3,3),dtype='int32',name='constant_input_3')
lookup_table = Embedding(input_dim=10,output_dim=5,input_length=3)(input3)
lookup_table = Lambda(lambda x: K.reshape(x, (-1, 15)))(lookup_table)
output1 = Lambda(look_up)([input1,input2,lookup_table])[0]
output2 = Lambda(look_up)([input1,input2,lookup_table])[1]
# Merge branches
output = Concatenate(axis=1)([output1, output2])
# Process merged branch
output = Dense(units=2
, activation='softmax'
)(output)
model = Model([input1, input2, input3], outputs=output)
return model
model = NN()
model.summary()
input_1 = np.array([1,2,1])
input_2 = np.array([1,0,1])
model.compile() # just for example
model.fit([input_1,input_2])
通过这种方式,可以将Embedding
添加到模型中。而且input3
是一个常数张量,我们不需要在model.fit()函数中提供它。
The model summary
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
constant_input_3 (InputLayer) (3, 3) 0
__________________________________________________________________________________________________
embedding_1 (Embedding) (3, 3, 5) 50 constant_input_3[0][0]
__________________________________________________________________________________________________
input1 (InputLayer) (None, 1) 0
__________________________________________________________________________________________________
input2 (InputLayer) (None, 1) 0
__________________________________________________________________________________________________
lambda_1 (Lambda) (3, 15) 0 embedding_1[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) [(None, 15), (None, 0 input1[0][0]
input2[0][0]
lambda_1[0][0]
__________________________________________________________________________________________________
lambda_11 (Lambda) [(None, 15), (None, 0 input1[0][0]
input2[0][0]
lambda_1[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 30) 0 lambda_2[0][0]
lambda_11[0][1]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 2) 62 concatenate_1[0][0]
==================================================================================================
Total params: 112
Trainable params: 112
Non-trainable params: 0
__________________________________________________________________________________________________