如何将网络摄像头中第一个检测到的对象类别存储在变量中?

时间:2019-06-02 00:51:12

标签: python opencv tensorflow cv2

我只想将第一个检测到的对象的类与网络摄像头一起存储到变量中。我已经运行y = classes并打印(y)。它打印的是数字数组而不是字符串。我希望变量y存储第一次检测到的cat / dog而不是数字数组,只需要将第一个检测到的类字符串存储到变量中。帮助。代码如下:

import os
import cv2
import numpy as np
import tensorflow as tf
import sys


sys.path.append("..")


from utils import label_map_util
from utils import visualization_utils as vis_util


MODEL_NAME = 'inference_graph'


CWD_PATH = os.getcwd()


PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')


PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')


NUM_CLASSES = 6


label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)


detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    sess = tf.Session(graph=detection_graph)




# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

# Initialize webcam feed
video = cv2.VideoCapture(0)
ret = video.set(3,1280)
ret = video.set(4,720)

while(True):

    # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
    # i.e. a single-column array, where each item in the column has the pixel RGB value
    ret, frame = video.read()
    frame_expanded = np.expand_dims(frame, axis=0)

    # Perform the actual detection by running the model with the image as input
    (boxes, scores, classes, num) = sess.run(
        [detection_boxes, detection_scores, detection_classes, num_detections],
        feed_dict={image_tensor: frame_expanded})

    # Draw the results of the detection (aka 'visulaize the results')
    vis_util.visualize_boxes_and_labels_on_image_array(
        frame,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8,
        min_score_thresh=0.90)

    # All the results have been drawn on the frame, so it's time to display it.
    cv2.imshow('Object detector', frame)

    # Press 'q' to quit
    if cv2.waitKey(1) == ord('q'):
        break

# Clean up
video.release()
cv2.destroyAllWindows()

0 个答案:

没有答案