无法理解此错误“未知标签类型:'continuous-multioutput'”

时间:2019-05-30 14:21:04

标签: python-3.x pandas machine-learning svm decision-tree

我正在尝试对数据集运行几种机器学习算法,以预测薪水/收入是否大于50k或小于等于50k。我创建了一个函数,并将值传递给它,并使用了大小分别为1%,10%和100%的样本集。 我收到未知错误“未知标签类型:“连续多输出” 我不知道这是什么错误。

我尝试更改我使用过但没有用的分类算法。对于所有算法,它都显示相同的错误。

from sklearn.metrics import fbeta_score, accuracy_score

def train_predict (learner, sample_size, X_train, X_test, y_train, y_test):
    results = {}
    start = time()
    learner = learner.fit(X_train[:sample_size], y_train)
    end = time()
    results['train_time'] = end - start

    start = time()
    predictions_test = learner.predict(X_test)
    predictions_train = learner.predict(X_train[:sample_size])
    end = time()

    results['pred_time'] = end - start
    results['acc_train'] = accuracy_score(X_train[:sample_size], y_train[:sample_size])
    results['acc_test'] = accuracy_score[X_test, y_test]
    results['f_train'] = fbeta_score(X_train[:sample_size], y_train[:sample_size], beta = 1)
    resutts['f_test'] = fbeta_score(X_test, y_test, beta = 1)
    print("{} trained on {} samples. ".format(learner.__class__.__name__, sample_size))
    return results

from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

clf_A = DecisionTreeClassifier()
clf_B = GaussianNB()
clf_C = SVC()

samples_100 = len(X_train)       #taking 100% i.e. all the data in training set
samples_10 = int(len(X_train)*.1) # taking 10% of the training data
samples_1 = int(len(X_train)*.01) #taking 1% of the training data

results= {}
for clf in [clf_A, clf_B, clf_C]:
    clf_name = clf.__class__.__name__
    results[clf_name] = {}
    for i, samples in enumerate([samples_1, samples_10, samples_100]):
        results[clf_name][i] = \
        train_predict(clf, samples, X_train, y_train, X_test, y_test)
vs.evaluate(results, accuracy, fscore)

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-66-e06d42fbd15b> in <module>
      5     for i, samples in enumerate([samples_1, samples_10, samples_100]):
      6         results[clf_name][i] = \
----> 7         train_predict(clf, samples, X_train, y_train, X_test, y_test)
      8 vs.evaluate(results, accuracy, fscore)

<ipython-input-62-4484b803a707> in train_predict(learner, sample_size, X_train, X_test, y_train, y_test)
      2     results = {}
      3     start = time()
----> 4     learner = learner.fit(X_train[:sample_size], y_train)
      5     end = time()
      6     results['train_time'] = end - start

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
    799             sample_weight=sample_weight,
    800             check_input=check_input,
--> 801             X_idx_sorted=X_idx_sorted)
    802         return self
    803 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
    138 
    139         if is_classification:
--> 140             check_classification_targets(y)
    141             y = np.copy(y)
    142 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in check_classification_targets(y)
    169     if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
    170                       'multilabel-indicator', 'multilabel-sequences']:
--> 171         raise ValueError("Unknown label type: %r" % y_type)
    172 
    173 

ValueError: Unknown label type: 'continuous-multioutput'

我希望这段代码能够运行并显示这些数据集的这些算法的准确性和其他指标。

P.S。我知道代码太长且繁琐,但是请花一些精力通过它,并让我知道解决方案。我是这个机器学习领域的新手。任何帮助将不胜感激。

P.S。请不要将此问题标记为重复,我已经经历过类似的问题,并尝试了所有建议但徒劳的建议。对我来说没有用。

2 个答案:

答案 0 :(得分:0)

好吧,我得到一个错误,问题出在我采样数据集的方式上。 我使用frac属性更改了采样代码,错误消失了。

samples_100 = df.sample(frac = 1)      #taking 100% i.e. all the data in training set
samples_10 = df.sample(frac = .1)      #taking 10% of the training data
samples_1 = df.sample(frac = .01)      #taking 1% of the training data

答案 1 :(得分:0)

您收到未知错误 'Unknown label type: 'continuous-multioutput'' 因为,如果您在代码中看到

train_predict(clf, samples, X_train, y_train, X_test, y_test)

这里需要重新排列

train_predict(clf, samples, X_train, X_test, y_train, y_test)

由于我们要在变量 x 和 y 的训练和测试之间拆分数据,因此顺序对于正确拆分和分配数据很重要。

我遇到了同样的问题,但它对我有用。