我正在使用带有python(revoscalepy
,microsoftml
)的SQL Server 2017数据库内机器学习服务来通过Jupyter Server笔记本创建模型。
我可以使用revoscalepy设置我的compute_context,并成功运行模型并将结果存储到数据框中。
现在,我尝试使用与使用rx_featurize
连接到数据库时使用的连接字符串相同的连接字符串来存储(插入或写入)这些数据帧值,但出现此错误type object argument after * must be an iterable, not NoneType
。
下面是我正在运行的代码:
output_df = pd.DataFrame(data = predictions, index=unique_id, columns=['predictions'])
from microsoftml import rx_featurize
rx_featurize(data=output_df,output_data=RxSqlServerData(connection_string=connection_string_1, table = 'predicted', database_name='banktest'), overwrite = True)
错误如下:
TypeError Traceback (most recent call last)
<ipython-input-32-7ae26d056309> in <module>()
4 # a_df = pd.DataFrame([[0, 1], [2, 3]], columns=[...])
5
----> 6 rx_featurize(data=output_df,output_data=RxSqlServerData(connection_string=connection_string_1, table = 'predicted', database_name='banktest'), overwrite = True)
C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-packages\microsoftml\modules\featurize.py in rx_featurize(data, output_data, overwrite, data_threads, random_seed, max_slots, ml_transforms, ml_transform_vars, row_selection, transforms, transform_objects, transform_function, transform_variables, transform_packages, transform_environment, blocks_per_read, report_progress, verbose, compute_context)
162 transform_nodes = transform_data(
163 ml_transforms, data=input_data,
--> 164 features=None, output_data=output_data_, model=transform_model)
165
166 ## combine the transform models
C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-packages\microsoftml\modules\graph_composition.py in transform_data(ml_transforms, data, features, output_data, model)
41
42 if features is None:
---> 43 sub_graph = Graph(*ml_transforms)
44 else:
45 ## combine the features
TypeError: type object argument after * must be an iterable, not NoneType
microsoftml是我安装python服务时安装的库。
以下是我为什么用rx_featurize
将数据插入数据库的链接。
[Using revoscalepy to insert data into a database
我还创建了一个空白表,预测每个数据帧的列数,但仍然显示错误