在将数据插入数据库时​​使用RxSqlServerData和rx_featurize的“ *之后的类型对象参数必须是可迭代的,而不是NoneType”错误

时间:2019-05-28 13:55:00

标签: python sql-server jupyter-notebook client-server revoscalepy

我正在使用带有python(revoscalepymicrosoftml)的SQL Server 2017数据库内机器学习服务来通过Jupyter Server笔记本创建模型。 我可以使用revoscalepy设置我的compute_context,并成功运行模型并将结果存储到数据框中。 现在,我尝试使用与使用rx_featurize连接到数据库时使用的连接字符串相同的连接字符串来存储(插入或写入)这些数据帧值,但出现此错误type object argument after * must be an iterable, not NoneType

下面是我正在运行的代码:

output_df = pd.DataFrame(data = predictions, index=unique_id, columns=['predictions'])

from microsoftml import rx_featurize

rx_featurize(data=output_df,output_data=RxSqlServerData(connection_string=connection_string_1, table = 'predicted', database_name='banktest'), overwrite = True)

错误如下:

TypeError                                 Traceback (most recent call last)
<ipython-input-32-7ae26d056309> in <module>()
      4 # a_df = pd.DataFrame([[0, 1], [2, 3]], columns=[...])
      5 
----> 6 rx_featurize(data=output_df,output_data=RxSqlServerData(connection_string=connection_string_1, table = 'predicted', database_name='banktest'), overwrite = True)

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-packages\microsoftml\modules\featurize.py in rx_featurize(data, output_data, overwrite, data_threads, random_seed, max_slots, ml_transforms, ml_transform_vars, row_selection, transforms, transform_objects, transform_function, transform_variables, transform_packages, transform_environment, blocks_per_read, report_progress, verbose, compute_context)
    162     transform_nodes = transform_data(
    163         ml_transforms, data=input_data,
--> 164         features=None, output_data=output_data_, model=transform_model)
    165 
    166     ## combine the transform models

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-packages\microsoftml\modules\graph_composition.py in transform_data(ml_transforms, data, features, output_data, model)
     41 
     42     if features is None:
---> 43         sub_graph = Graph(*ml_transforms)
     44     else:
     45         ## combine the features

TypeError: type object argument after * must be an iterable, not NoneType

microsoftml是我安装python服务时安装的库。

以下是我为什么用rx_featurize将数据插入数据库的链接。 [Using revoscalepy to insert data into a database

我还创建了一个空白表,预测每个数据帧的列数,但仍然显示错误

0 个答案:

没有答案