如何在python中调整图的大小(Matplotlib)

时间:2019-05-25 23:28:54

标签: python matplotlib seaborn pearson-correlation

我有一个包含200多个要素的数据集。我想使用sns和matplotlib可视化用于Pearson Correlation的热图。 我创建的图形很小,无法正确显示(请参见下图)

1)我的问题是如何调整图表? 2)这是一种可视化具有200多个特征的数据集的正确方法吗?

这是我的代码:

#!/usr/bin/env python
# coding: utf-8

# In[105]:
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns



# In[106]:


# Load data from path

D_rt_none = pd.read_pickle("data/170408-2141-rt-none.pkl")
D_rt_nginx = pd.read_pickle("data/170408-2154-rt-nginxlb.pkl")
D_rt_socat = pd.read_pickle("data/170408-2206-rt-socat.pkl")
D_rt_redir = pd.read_pickle("data/170408-2232-rt-squid.pkl")
D_rt_nginx_socat_redir = pd.read_pickle("data/170409-0718-rt-nginxlb-socat-squid.pkl")
D_rt_socat_redir_nginx = pd.read_pickle("data/170409-1606-rt-socat-squid-nginxlb.pkl")
D_rt_redir_nginx_socat = pd.read_pickle("data/170410-0054-rt-squid-nginxlb-socat.pkl")


# In[107]:


def main():
    print("NFV Data Visualization")
    print(D_rt_nginx.head())
    print("Info")
    print(D_rt_nginx.info())
    print("Describe")
    print(D_rt_nginx.describe())
    corr = D_rt_nginx.corr()
    plt.figure(figsize=(50,50))
    ax = sns.heatmap(
                 corr,
                 vmin=-1, vmax=1, center=0,
                 cmap=sns.diverging_palette(20, 220, n=200),
                 square=True
                 )
    ax.set_xticklabels(
                   ax.get_xticklabels(),
                   rotation=45,
                   horizontalalignment='right'
                   );
    plt.show()


# In[110]:





# In[109]:


main()

输出

Graph

1 个答案:

答案 0 :(得分:1)

就像@gmds在评论中建议的那样,我不得不将它们分别分组并生成图形。